시각장애 초등학생 학습을 위한 수평잡기 자료의 개발

차현수 · 백남권 · 박중호

진주교육대학교 교육과학과, 진주 660-756
(2009년 2월 16일 접수)

시각장애 초등학생용 수평잡기 자료를 제작하여 시각장애 초등학생들을 대상으로 실험하였다. 실험은 제7차 과학교육과정의 초등학교 4학년에 나오는 수평잡기 개념을 관찰하면서 널빤지에 나무도마를 올려놓는 것이다. 일반적으로 장애인에게만 가능하다. 그러나 시각적 관찰에 어려움이 있는 시각장애 초등학생들은 수평잡기 실험과 관찰에 어려움을 겪는다. 이러한 점을 보완하기 위하여 기존의 수평잡기 실험 기구에 소리가 나는 기구를 부착하여 시각장애 초등학생용 수평잡기 실험기구를 제작하였다. 제작된 실험기구의 적용가능성에 대해서는 부산 소재 영남대학교 저시학과 전쟁 시각장애 초등학생들에게 실험하였다. 실험 결과 본 연구자들이 제작한 수평잡기 자료는 현장에 충분히 적용 가능한 교육으로 만족한 결과를 얻었다.

PACS numbers: 01.40.Ej
Keywords: 시각장애, 도개, 수평

I. 서론

오늘날의 과학교육은 과학자를 위한 과학 교육이 아니라 모든 사람을 위한 과학으로서 과학적인 소양을 가진 일반시민을 위한 과학 교육을 강조한다. 제7차 교육과정의 종급목표에 의하면, 사람에 대한 특성과 기본지식을 알고 자연현상에 관심을 가지며 탐구하는 태도를 길러 생활에 관련된 기본적인 과학 소양을 가진다 [1]. 즉, 제7차 교육과정의 과학학습 종급목표는 실험에 필요한 기본적인 과학적 소양에 중점을 둔다.

특수교육(장애인에 대한 교육)에서도 구체적으로 다음과 같이 기본적인 과학적 소양을 강조한다. 첫째, 주변의 자연현상에 관심과 흥미를 가지고 탐구해 합리적 문제해결능력을, 탐구하는 태도, 실생활에 필요한 적응력을 기른다. 둘째, 여러 경험을 통해 사실이나 개념을 이해, 자연현상에 관심과 흥미를 갖게 한다. 또한 탐구심과 탐구능력을 향상시키는 문제해결의 자주성과 생활에 대한 기본소양을 기르는데 주안점을 두는 것이다. 셋째, 주위의 여러 사물과 현상에 대하여 호기심과 관심을 가지고 탐구하는 태도를 가진다 [2].

이러한 맥락에서 본다면, 무엇보다도 과학교육은 장애아동이거나 특수아동 모두에게 적정적인 경험을 통한 사물과 자연 현상에 대한 기본적인 견해를 갖게 하는 것이라 할 수 있다. 또한, 학문의 특성상 과학교육은 관찰과 실험활동이 매우 중요하기 때문에 장애아동은 정상아동에 비해 오감을 통한 자연현상에 대한 정보수집에 있어서 정상인에 비해 조금 부족할 수 있다는 인식과 관찰과 실험이 중요한 과학 학습에 있어서 과학에 대한 흥미와 실험 기구의 조작이 미숙할 것으로 정상인들이 생각할 수 있다 [5-11]. 이로 인해 특수교육 분야에서 과학교육이 축소되었으며 그 의미가 약화되었다. 실제 특수학교에서 과학교육과를 운영한다. 하지만 일반학교 과학교육에 비해 학생 된 것은 시간을 배정하고 있다. 장애학생들에게 과학 교육을 제공한다는 건 자체가 시행이 복잡하고 시간이 많이 소비되는 것으로 간주되고 있다 [4].

특히, 특수교육 대상자 중 시각장애인을 위한 학교가 국립 1개교, 공립 3개교, 사립 9개교 모두 13개교가 있으며, 이 13개 학교에 대해의 시각장애 학생이 약 1,400명에 이른다. [5]. 위에서 언급하였듯이 어려운 이유에서도 상당수의 시각장애 학생들은 과학 학습으로부터 소외되어 있다고 할 수 있다. 즉, 현실적으로 특수학교에서 시각장애학생은 일반 학생과 같은 교육과정이 운영되며, 실험의 내용이나 방법에 있어서도 실제 일반학교와 병합교가 차이가 없어 시각장애학생이 효과적으로 과학 실험을 하기는 어려움이 따른다 [7].

자연의 정보는 오직 시각적인 정보뿐만 의존하는 것이 아니기 때문에 시각장애학생들이 가진 모든 감각을 이용한다면 충분히 관찰과 실험을 즐길 수 있다. 오히려

*E-mail: parkkdp@cue.ac.kr
Table 1. The investigation of visually handicapped elementary students. (Unit: persons)

<table>
<thead>
<tr>
<th>Subject</th>
<th>3rd grade</th>
<th>Low vision</th>
<th>Achromatopsia</th>
<th>4th grade</th>
<th>Low vision</th>
<th>Achromatopsia</th>
<th>5th grade</th>
<th>Low vision</th>
<th>Achromatopsia</th>
<th>6th grade</th>
<th>Low vision</th>
<th>Achromatopsia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers</td>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

시간대에는 학생들은 사물과 현상을 일상생활에서 접촉하는 양이 적기 때문에 의도적으로 관찰과 실험을 통하여 사물과 현상에 접촉하는 기회를 확대시켜 나갈 필요가 있다. [10,11]

과학지도는 일반적으로 시각을 통해 습득되는 내용이 많다고 할 수라도 시간대에는 학생이 과학 교육과정을 효과적으로 이수하기 위해서는 순상된 시각적 감각 투입을 어느 정도 보상할 수 있는 다각적 방법에 기초해야 한다 [6,8]. 따라서 본 연구에서는 현 초등학교 과학 교과서에 소개되어 있는 몇몇 개념 중 수평잡기를 이용한 문제가 힘들어 경험을 토대로 시간대에 초등학생들이 사용할 수 있는 창각과 축각을 이용한 수평잡기 저울을 개발하여 본 연구에서 개발된 실험기구가 사대에는 초등학생들의 과학 실험에 적용가능한지 알아보고자 한다.

II. 연구 방법

1. 실험대상

Table 1은 실험 대상자와 관련된 내용을 정리하여 나타낸 표이다. 전국의 시간대에는 학교는 총 13개가 있다. 본 연구의 실험 대상은 부산 명학교에 소속되어 있는 사대에 초등학생 3 ~ 6학년 중 중심체험을 제외한 실험에 참여할 수 있는 저소득 2명과 전형 5명을 대상으로 실시하였다.

2. 연구 수행 절차

연구를 위해 부산 명학교의 초등교사 (실험대상자 담당교사 인원: 5명)에게 과학실험의 어려움과 실험기구의 문제점 등에 관한 설문조사를 하였다. 부산 명학교의 제반 여건과 실험 조사를 토대로 시간대에 초등학생용 수평잡기 실험기구를 제작하였다. 그리고 제작된 실험기구가 새로운적으로 시간대에 초등학생에게 적용가능한지를 알아보기 위해 실험활동 후 시간대에 초등학생들과 면담을 통하여 조사하였다. 연구 수행에 관한 구체적인 사항은 다음과 같다. 첫째 시간대에 초등학생의 과학 실험에 대한 초등교사의 견해를 설문 조사한 결과 가장 실험을 하기 어려운 과목에 대한 질문에서 5명 모두 화학을 선택하였으며, 선택 이유를 시각적 관찰이 어렵기 때문에 시간대의 색깔을 구분하기 힘들었다 (3명). 시간대가 힘들어 실험하기 힘들다는 (2명). 화학이 다른 분야는 어떻게 수업을 하느냐에 대한 인터뷰에서 실험과 지구과학은 실험을 이용한 자료가 많은 편이라 비교적 수업이 힘들지만 물리의 경우 창각이나 축각을 이용한 자료가 부족한 실정이다라고 응답하였다. 따라서 본 연구에서는 실험의 힘들성이 작고, 개선의 가능성이 높은 물리 영역 중 수평잡기 저울 실험을 선택하였다. 비장에 초등학생들이 과학수업 시간에 활용하는 수평잡기 저울과 본 연구자들이 제작한 수평잡기 저울을 시각대에 초등학생들에게 사용해 보게 하였다. 두 실험기구를 실험활동을 한 후 면담을 통하여 시간대에 초등학생들이 실험과 관찰 시 두 실험기구의 편리성과 독립성의 차이를 알아보았다.

3. 분석 방법

본 연구에서 기준의 수평잡기 저울의 불편한 점에 대한 것 과학 실험 시 주로 사용하는 감각기구, 과학실험 상의 어려움에 관한 사항, 본 연구에서 제작한 시간대 에인용 수평잡기 저울과 일반인용 수평잡기 저울을 사용했을 때 차이점을 면담 후 응답을 분석하였다. 분석항목에서 학업성취에 관한 내용은 제외하였다.

III. 연구 결과

1. 시각장애 초등학생용 수평잡기 저울의 설계와 제작

Figure 1(a)~1(d)는 시각장애 초등학생용 수평잡기 저울 실험기구 제작을 위한 전체 실험기구의 개발도와 부문 상세도를 나타낸 그림이다. Fig. 1(a)와 같이 실험기구는 크게 세가지 영역으로, 조작 스위치 등이 부착된 전체를 지지하는 받침대(Support), 수평잡기를 할 때 받기
나무를 쓰는 부분으로 난발지 본체 (Body of board), 삼각대 (Tripod)로 나누었다. 첫째, 수평잡기를 둘 때 향기 나무를 쓰는 부분으로 난발지 본체는 난발지 본체의 축을 고정하는 고정나사 (Fixing screw), 난발지 본체의 관을 나누는 고정대 (Block), 삼각형 안 난발지 본체의 기울어지는 정도를 보정하는 수평조절나사 (Level control screw), 시각장에 초등학생용 스티커 (Sticker for visually impaired)로 이루어져 있다. 둘째, 삼각대는 외부의 삼각대와 내부의 배암식으로 이루어진다. 셋째, 받침대는 받침대 외부에 전원 공급 스타치, 받침대 내부의 밸 감지 센서 (zelfic 센서, Ultraviolet rays sensor)가 받침대 외부의 스피커 (Speaker)에 연결된다. 난발지 본체가 한쪽으로 기울어질 때 각각 다른 소리를 내는 양쪽 스피커는 수평잡기 재료를 이쪽으로 기울어 재료의 태양을 알려준다.

각 부분별 실험기구의 제작을 위해 고려한 사항을 상세히 설명하는 것과 같다. Fig. 1(a)의 받침대 재료는 아크릴로 만든다. 받침대는 삼각대와 난발지 본체를 받쳐 주는 역할을 하며, 혼들림이 없어야 하며, 변형이 일어나지 않고, 정확하게 가공할 수 있는 아크릴이 적당하다. Fig. 1(b)는 난발지 본체를 나타낸 것이다. 난발지 본체의 소재는 아크릴로 한다. 아크릴은 환경에 비해 변형이 적고, 단단한 장점이 있다. 또한 측량에 의해서 제작시 쉽게 자를 수 있다. 고정나사는 삼각대와 난발지 본체를 이어주는 역할을 한다. 고정대는 향기 나무의 혼들림을 방지하기 위한 역할을 한다. 즉, 시각장에 초등학생들은 시각적 감각의 한계 때문에 측량을 많이 이용한다. 따라서, 혼자 힘으로 나무도울을 정확한 위치에 올려 놓기 힘들다. 또한, 수평잡기 실험 중 가장 중요한 실험활동은 난발지 본체에 향기 나무를 정확한 위치에 올려 놓는 것이다. 그러므로, 본 연구의 실험기구는 시각장에 초등학생들이 혼자 힘으로 나무도울을 난발지 본체에 정확하게 올려 놓게 하기 위하여 난발지 본체의 간을 나누는 고정대를 설치하여 실험 활동에 무리가 없게 한다. 넷째, 난발지 본체의 간 밀착도에 장애인용 숫자 스티커를 붙여 놓아 무게의 비로 다른 거리의 바늘을 정확하게 가능할 수 있게 한다. 또한, 삼각대와 난발지 본체는 고정나사를 이용하여 연결하였으며, 난발지 본체가 상하로 움직일 때 삼각대와의 마찰을 최소화하기 위해 배어림으로 연결한다. 다섯째, 삼각대와 난발지 본체가 배어림으로 연결되어 있기 때문에 실험 테이블 상태에 따라 주변 환경에 의해 난발지 본체가 수평잡기에 에너지할 수 있다. 따라서, 난발지 본체 양쪽 긁 부분에 미세한 구조점이 가능한 수평조절나사를 설치하여 실험의 정확성과 정밀성을 높이고자 한다.

Figure 1(c)는 받침대 내부에 장착된 몇 갑을 센서에 의한 소리 변환 전기회로도이다. 난발지 본체가 수평이 잡히지 않았을 때 전기회로에 의해 어떻게 감지하여 소리로 변환되는가에 대한 작동 원리를 Fig. 1(d)에 나타내었다. 작동원리는 다음과 같다. 첫째, 몇 갑이 센서는 일반 가정의 출입문에서 사용되는 부분으로 볼이 감지될 때 소리는 나오도록 되어 있다. 본 수평잡기 저울 실험기구는 몇 갑이 사라질 때 스피커로부터 소리가 나오도록 제작한다. 둘째, 양쪽의 스피커는 각기 다른 소리가 나오도록 연결한다. 시각장에 초등학생들은 시각의 한계 때문에 적절한 장점이 있어야 하며, 전원 공급 해주는 역할을 하며, 전원과 연결되어 있어 교사가 실험장치가 작동하지 않게 할 수 있게 한다. 넷째, 내부에 dc 12 V 교류변환기 (Inverter)를 설치하였다. 외부의 220 V 전원 (Sources of electricity)으로부터 전기회로가 작동하도록 전기를 변환시켜 준다.
The figure of experiment of visually handicapped student Fig. 4. Real image of experiment and consultation. (a) The figure of experiment of visually handicapped student with horizontal balance for visually handicapped. (b) The figure of counseling about the horizontal balance for visually handicapped.

2. 제작된 수평잡기 저울의 현장 적용가능성 조사

1) 실험과 면담을 통한 설문조사

Figure 4(a)–4(b)는 시각장애 초등학생들의 실험활동 장면과 담당교사와 상담하는 장면의 사진이다. 실험 전 담당교사는 시각장애인용 수평잡기 저울의 경우 간단한 조작법을 시각장애 초등학생들에게 설명 하였다. 두 실험에서 담당교사는 간단한 도움만 제공하였으며, 시각 장애 초등학생들이 스스로 실험하게 하였다. 시각장애 초등학생용 수평잡기 저울과 비 장애 초등학생들이 사

Fig. 2. Design drawing for horizontal balance for visually handicapped elementary students.

Fig. 3. Real image of horizontal balance for visually handicapped elementary students. (a) Horizontal balance balanced status with one block at three partition distance in left and three one at one in right. (b) Unbalanced status with one block at three partition distance in left and two one at one in right which make it ring and light.

Fig. 3(a)–3(b)는 실제로 완성된 시각장애 초등학생용 수평잡기 저울이다. 수평잡기 저울은 양쪽의 무게가 동일할 경우 평행을 이루게 되고 양쪽의 무게가 다를 경우 한쪽으로 기울어지게 된다. Fig. 3(a)의 경우는 양쪽이 평행을 이루 경우이다. 원측에는 첫 번째 블록에 3개 오
유형에 수평잡기 저울을 동시에 제공하여 시각장애 초등학생이 실험 후 담당교사가 두 실험기구의 장단점을 묻었다. 실험 대상은 3 ~ 6학년 학생 중 지시력 2명, 전쟁 5명이었고, 수평잡기 실험을 하고, 두 도구를 비교해 보았을 때 시각장애인용 수평잡기 저울의 관리성과 실험의 독립성에 관한 질문을 하였다.

2) 설문 분석

Table 2는 본 연구자들이 개발한 수평잡기 저울을 이용하여 창기 나무의 무게와 중심점에서 각각의 관계를 알아보는 실험에 대한 실험 대상자들의 응답결과이다. 기존의 실험기구를 이용하여 실험 시 어려움에 대해 모두 답하려는 질문에 대한 응답은 전쟁의 시각장애 초등학생의 경우, 5명 중 4명이 중심이 어디인지 알 수 없다고 대답하였고, 3명의 학생이 나무도막을 정확한 위치에 놓을 수 없다. 여타로 기울여져 있는지 알 수 없다고 3명의 학생이 대답하였다. 저지시 시각장애 초등학생의 경우, 2명 모두 창기 나무를 정확한 위치에 놓을 수 없으라고 대답하였고, 1명은 중심이 어디인지 찾기 어렵다고 대답하였다. 이는 저지시 시각장애 초등학생이나도 세밀한 관찰과 조작을 해야 하는 수평잡기 실험이 어렵다는 것을 의미한다.

Table 3은 시각장애인 학생용 수평잡기 저울과 기존의 수평잡기 저울을 사용하여 실험을 한 후 시각장애인용 수평잡기 저울이 기존의 수평잡기 저울에 비해서 시각장애학생들의 실험에 어떤 영향을 미치는가에 대한 실험결과이다. 실험의 독립성에 관한 설문문의 나무도막을 쉽게 놓을 수 있는 쪽은 어느 쪽이든, 여러 가지의 나무도막을 받기 쉬운 것은 어느 쪽이든, 남받침의 중심을 찾기 쉬운 것은 어느 쪽이든하는 결과를 얻었다.

Table 4는 저지시 시각장애 초등학생 모두가 본 연구에서 제작한 시각장애인용 수평잡기 저울이 실험하기 쉬울다는 결과를 얻었다.

Table 2. The response of visually handicapped elementary students on the difficulty of experiment activity while using the horizontal balance for normal elementary students. (Unit: persons)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Can not find the center</th>
<th>Can not put the block</th>
<th>Can not know the way of incline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low vision</td>
<td>Achromatopsia</td>
<td>Low vision</td>
</tr>
<tr>
<td>Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putting the block easily</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Putting the several blocks</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Finding the center of board</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3. The convenience while using the horizontal balance for visually handicapped elementary students and the horizontal balance for normal elementary students. (Unit: persons)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Preexistence Scale for Visually Impaired</th>
<th>Eulilibrium Scale for Visually Impaired</th>
<th>No Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low vision</td>
<td>Achromatopsia</td>
<td>Low vision</td>
</tr>
<tr>
<td>Putting the block easily</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Putting the several blocks</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Finding the center of board</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4. The self-reliance while using the horizontal balance for visually handicapped elementary students and the horizontal balance for normal elementary students. (Unit: persons)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Preexistence Scale for Visually Impaired</th>
<th>Eulilibrium Scale for Visually Impaired</th>
<th>No Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low vision</td>
<td>Achromatopsia</td>
<td>Low vision</td>
</tr>
<tr>
<td>Knowing the way of incline</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Doing the experiment by yourself</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

IV. 결론 및 제언
본 연구는 시각장애 초등학생들이 수평잡기 저울 실험 활동을 할 때 어려움을 극복하기 할 수 있는 수평잡기 저울을 제작하여 시각장애 초등학생들에게 적용가능한지 알아보았다. 시각장애 초등학생용 수평잡기 저울의 제작과 적용가능성에 관한 연구 결과는 아래와 같다.

첫째, 시각장애 학생들은 정상인과 동같은 교육과정과 실험도구로 실험과 관찰을 하기 때문에 실험과 관찰에 어려움이 생긴다. 생활과 자이생활 분야에 있어서는 시각장애학생들이 촉각을 이용하여 관찰을 할 수 있는 모형들이 개발되어 보급되어 있는 편이지만, 화학과 물리 영역에서 실험을 스스로 하거나 쉽게 할 수 있는 도구의 개발과 보급이 미흡하다.

둘째, 시각장애 초등학생은 전쟁과 재식하게 나눌 수 있는데 저시력 시각장애 초등학생의 경우 어느 정도 시각을 통한 실험과 관찰이 가능하지만, 전쟁 시각장애 초등학생의 경우 더 큰 어려움을 겪는다.

셋째, 시각장애 초등학생들을 위한 수평잡기 저울을 제작하였다. 또한, 적용가능성에 대한 시각장애 초등학생들의 실무단담 결과로부터, 본 연구진이 개발한 시각장애 초등학생용 수평잡기 저울이 기존의 초등학생용 수평잡기 저울보다 더 실험활동에 있어 관리하려는 결론을 얻었다.

위의 결과로부터, 시각장애 초등학생들의 경우 과학 실험에서 시각적 관찰을 할 수 있는 정상인에 비해 실험에 어려움이 있기 때문에 시각장애인을 위한 교육과정이 제바이 운영되어야 하며, 과학실험활동 시 장애 학생들이 쉽고, 정확하게 관찰할 수 있는 더 많은 장애인용 실험기구의 제작이 필요하다고 사료된다.

감사의 글

위 논문은 2008년 진주교육대학교 초등교육연구원의 지원을 받았음.

참고 문헌

Development of a Horizontal Balance for Visually-handicapped Elementary Students

Hyun-Soo Cha, Nam Gwon Back and Jong-Ho Park*

Department of Science Education, Chinju National University of Education, Jinju 660-756

(Received 16 February 2009)

The purpose of this study is to develop a horizontal balance for visually-handicapped elementary students. According to elementary 4th-grade curriculum of the current 7th science subject, the experiment with a horizontal balance reflects putting some pieces of wood on a board (on the balances) and observing the inclination degree; thus, generally, it is available to normal elementary students only. This experiment is difficult for those without sight, who rely mainly on the senses of touch and hearing to perform and analyze an experiment. Thus, in order to solve this problem, we put some sound devices on the experimental apparatus. This experiment, using the horizontal balance we had made, was conducted with those who had low vision and achromatopsia. To test the excellence and independency in the experiment, we chose Busan School of the Blind; and only then, we chose only seven students with a simple visual handicap from among students in the 3th to 6th grades for the experiment and counseling. We obtained educationally satisfactory results through this experiment.

PACS numbers: 01.40.Ej
Keywords: Blind, Weight, Horizontal balance, Visually-handicapped elementary students

*E-mail: parkkd@cue.ac.kr