표시과목「화학」의 교사 자격 기준과 평가 영역 및 평가 내용 요소

표시과목	화 학				
연구수행기관	한 국 교 육 과 정 평 가 원				
공동연구기관	연구주관학회 : 대한화학회 연구협력학회 : 한국과학교육학회				
연구책임자	노석구 (경인교육대학교)				
공동연구자	강성주 (한국교원대학교) 백성혜 (한국교원대학교) 정대홍 (서울대학교) 한재영 (충북대학교)	김건철 (충남대학교) 임희준 (경인교육대학교) 정진갑 (계명대학교)	박현주 (조선대학교) 전화영 (청담고등학교) 채희권 (서울대학교)		

- ① 표시과목별 교사 자격 기준은 교육과학기술부가 발표한 "신규 교사의 자질과 능력에 관한 일반 기준 (2006. 11. 17)"을 바탕으로 표시과목의 성격에 맞게 구체화 한 것입니다.
- ② 표시과목별 "평가 영역"과 "평가 내용 요소"는 위의 교사 자격 기준을 근거로 하고, 교육과학기술부가 고시한 '표시과목의 기본 이수 과목 및 분야'에 제시된 과목을 준거로 각 학회가 정리한 내용을 공동관리위원회가 검토·확정한 것입니다. 이 자료는 2009학년도중등교사임용후보자선정경쟁시험부터 표시과목별 출제 문항의 타당도를 제고하는 기초 자료로 활용될 것입니다. 다만, 출제위원단의 결정에 따라 세부적인 사항의 일부가 문항 출제 과정에서 조정될 수 있음을 밝힙니다.
- ③ 47개 학회가 한국교육과정평가원과 공동 연구를 수행하는 과정에서 표시과목별로 실시한 '세미나'자료와 '공청회'자료와 최종 연구 결과가 다를 수 있습니다. 따라서 공동관리위원회가 공식적으로 공개한 본 자료를 참고하시기 바랍니다.
- ④ 47개 학회가 연구수행 중 '세미나'와 '공청회' 및 최종 보고서 등에서 제시한 1·2차 예시 문항은 출제의 참고자료로만 사용됨을 알려드립니다. 특히, '수업 능력 평가 도구 및 예시 자료'는 시·도 교육청의 교원 임용 정책 및 시험 시행 여건 등에 따라 각기 다를 수 있으므로 착오 없으시기 바랍니다.

중등학교교사 표시과목

화 학

교사 자격 기준

2008. 9. 30.

한 국 교 육 과 정 평 가 원 대 한 화 학 회

1. 교사 자격 기준

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
I. 화학교사의 인성, 태도, 책임	[기준 1] 화학교사는 건전한 인성과 교직사명감을 가지며, 화학 수업에 대한 긍정적인 태도와 책임의식을 갖는다.	 화학교사는 교사로서의 건전한 인성을 갖춘다. 화학교사는 교직 사명감과 교직 윤리의식을 갖는다. 화학교사는 화학과 화학 교수에 대한 긍정적인 태도와 사회 및 학생에 대한 책임의식을 갖는다. 	기준 1 1-1 1-2 1-3
Ⅱ. 전문적 화학 지식과 능력	[기준 2] 화학교사는 과학의 본성을 이해하고 실천한다.	 화학교사는 화학지식의 의미와 특성을 이해한다. 화학교사는 화학이 발달되어 온 과정과 방법을 이해하고, 현대 과학의 특성을 이해한다. 화학교사는 과학적 방법을 알고, 이를 화학 교수-학습, 화학교육 현장 연구, 화학 연구에 적용한다. 	기준 4 4-1 4-2 4-3
	[기준 3] 화학교사는 화학 내용에 대한 전문적인 지식과 능력을 갖는다.	 화학교사는 '물리화학 및 실험'에 대한 전문적인 지식과 능력을 갖는다. 화학교사는 '유기화학 및 실험'에 대한 전문적인 지식과 능력을 갖는다. 화학교사는 '무기화학 및 실험'에 대한 전문적인 지식과 능력을 갖는다. 화학교사는 '분석화학 및 실험'에 대한 전문적인 지식과 능력을 갖는다. 화학의 핵심 개념, 개념들의 관계, 탐구 방법을 이해한다. 화학의 최신 지식을 지속적으로 탐구한다. 	기준 4 4-1 4-2 4-3
	[기준 4] 화학교사는 화학을 다른 영역과 연결하여 이해한다.	 화학교사는 화학과 연결된 물리학, 생물학, 지구과학 등에 대한 기본적인 이해를 갖는다. 화학교사는 화학과 연결된 기술, 공학, 의학 등에 대한 기본적인 이해를 갖는다. 	기준 4 4-2 4-3
Ⅲ. 화학교육과정	[기준 5] 화학교사는 중등학교 화학 교육과정을 이해하고 적용한다.	 화학교사는 중등학교 과학 및 화학교육의 필요성과 그 목적을 안다. 화학교사는 중등학교 과학 및 화학 교육과정이 개정, 편성되어 온 과정과 특성을 안다. 화학교사는 중등학교 과학 및 화학 교육과정을 학생과 교육 여건에 적합하게 재구성하고 적용한다. 	기준 5 5-1 5-2 5-3

영역 (대범주)	표시과목별 자격기준	세부자격기준	일반기준 과의 관련성
IV. 화학 교수·학습	[기준 6] 화학교사는 학생들의 지식 및 선개념에 대하여 이해한다.	 화학교사는 화학에 대한 학생들의 선행학급, 학급 방식, 학급 동기 등을 이해한다. 화학교사는 화학 개념에 대한 학생들의 선개념을 파악하고 학습의 어려움을 치유하기 위하여 교수-학급 방법을 적용한다. 화학교사는 개별 학생의 개인차를 다방면에서 고려하고 이에 적합한 교수-학급 방법을 적용한다. 	기준 3 3-1 3-2 3-3
	[기준 7] 화학교시는 다양한 화학 교수-학습 방법을 알고, 이를 교수의 계획과 실제에 효과적으로 적용한다.	 화학교사는 효과적인 화학 교수를 위한 다양한 화학 교수-학습이론 및 모형의 특징을 이해하고 적용한다. 화학교사는 화학 지식의 이해에 적절한 교수-학습 방법을이해하고 적용한다. 화학교사는 학생들의 탐구 능력과 사고력 증진에 효과적인교수-학습 방법을이해하고 적용한다. 화학교사는 화학 및 화학수업에 대한 긍정적인 태도 증진에 적절한 교수-학습 방법을이해하고 적용한다. 다양한 과학 교수-학습 도구와 매체를 알고, 교수의 계획과실제에 효과적으로 이용한다. 	기준 6 6-1 6-2 6-3
V. 화학교육 평가	[기준 8] 화학교시는 화학 학습의 다양한 평가 방법을 이해하고 실천한다.	 화학교사는 화학 학습의 다양한 평가 방법을 알고 실천한다. 화학교사는 평가 목적에 적절한 평가 방법을 알고 이에 합당한 평가 도구를 개발한다. 화학 학습 평가 결과의 정량적 자료와 정성적 자료를 분석하고 이를 여러 가지 방법으로 제시한다. 화학 학습 평가 결과를 교수-학습 및 진로 지도에 효과적으로 활용한다. 	기준 7 7-1 7-2 7-3
VI. 화학교육환경	[기준 9] 화학교시는 효율적인 화학 수업을 위한 학습 환경 조성 방법을 이해하고 실천한다.	 화학교사는 효율적인 화학 학습 환경을 조성하고 관리한다. 화학교사는 화학 교수 학습에 필요한 시설과 설비를 안다. 화학교사는 화학 교수 학습과 관련된 안전과 안전사고 방지 대책 및 사후처리 방법을 안다. 화학교사는 교육공동체 구성원들의 사회적 관계와 상황을 안다. 	기준 8 8-1 8-2 8-3 기준 9 9-1 9-2 9-3
VII. 화학교사 전문성 계발	[기준 10] 화학교시는 화학교사 전문성을 지속적으로 계발하기 위해 노력한다.	 화학교사는 바람직한 화학 교사상과 교사자격기준을 이해하고 추구한다. 화학교사는 화학 교육 연구와 현장 연구의 목적과 방법을 이해 하고 실천하며, 이를 화학 수업에 활용한다. 교직 경력 전체를 통해 지속적으로 화학 교사 전문성을 계발한다. 교직공동체의 구성원으로 상호협력하면서 평생학습을 추구한다. 	기준 10 10-1 10-2 10-3

중등학교교사 표시과목

화 학

평가 영역 및 평가 내용 요소

2008. 9. 30.

한 국 교 육 과 정 평 가 원 대 한 화 학 회

평가 영역 및 평가 내용 요소

구분	기본 이수과목 및 분야	평가	영역	평가 내용 요소	중등학교 교육과정 관련성
				과학의 구조	7-12학년 전영역
				과학과 과학 지식의 본성	7-12학년 전영역
			151 m	과학지식의 형성과정	7-12학년 전영역
			철학 및 학사	과학의 발달 원리	7-12학년 전영역
		7	7/1	과학적 방법	7-12학년 전영역
				과학의 사회성	7-12학년 전영역
				과학이론의 수준 및 평가틀	7-12학년 전영역
				과학교육과정의 변천	7-12학년 전영역
				내용 체계의 변화	7-12학년 전영역
				시수 및 교과 체계의 변화	7-12학년 전영역
				학급 및 학년별 구조의 변화	7-12학년 전영역
		과학 교육과	1 ○ 귀 저	국내외 교육과정의 특징	7-12학년 전영역
			441/8	과학교육목표	7-12학년 전영역
				교육과정의 학년별 내용 구성의 특징	7-12학년 전영역
교과	화학			학년별 목표 및 수준의 특징	7-12학년 전영역
교육학	교육론	-		교육과정 이론	7-12학년 전영역
			STS와 과학윤리	7-12학년 전영역	
			교수 학습이론	행동주의, 인지주의, 구성주의, 학습양식 등 다양한 심리학적 이론의 특성	7-12학년 전영역
				가네, 피아제, 브루너, 오스벨 등이 제시한 다양한 교수학습이론의 특징 및 장단점	7-12학년 전영역
		괴워크스		개념변화학습, 순환학습, 발견학습, 발생학습, 탐구학습, 협동학습 등 다양한 교수 학습 모형의 특징 및 장단점	7-12학년 전영역
		이론		과학교수이론과 교수 전략의 특성을 적용한 수업 설계	7-12학년 전영역
		및 지도법		학습자와 교육 목표 및 내용의 특성을 고려한 과학교수이론과 교수 전략의 적용	7-12학년 전영역
			화학	화학 관련 교재 분석 방법	7-12학년 전영역
			교재연구	지도전략을 적용한 구체적인 지도방법	7-12학년 전영역
		및 지도법	상호작용, 개념도, 비유, POE, V도 등을 활용한 다양한 교수전략의 특징 및 장단점	7-12학년 전영역	

구분	기본 이수과목 및 분야	평가	영역	평가 내용 요소	중등학교 교육과정 관련성
		과학교수	하코스	학습자의 오개념에 대한 이해 학습자의 개념이나 인지수준, 흥미 등 학습자의	7-12학년 전영역 7-12학년 전영역
		학습 이론	화학 교재연구	투성을 고려한 지도법 교육과정의 목표 및 내용의 특성을 고려한 지도법	7-12학년 전영역 7-12학년 전영역
		및	및	학습자의 인지수준에 따른 조작의 이해	7-12학년 전영역
		지도법	지도법	실험실 안전, 시약 취급법	7-12학년 전영역
				멀티미디어, CAI, WBI, MBL 활용법	7-12학년 전영역
교과	화학			다양한 목표 분류틀의 특징	7-12학년 전영역
교육학	교육론			평가 문항의 목적과 기능	7-12학년 전영역
				탐구능력 평가 요소	7-12학년 전영역
				평가 문항의 특징과 장단점	7-12학년 전영역
		과학학	과학학습평가	문항의 타당도, 신뢰도, 난이도, 변별도에 대한 분석	7-12학년 전영역
				인지 영역, 정의 영역, 심체 영역의 평가 문항 개발 및 장단점 분석	7-12학년 전영역
				수행평가를 위한 루브릭 개발 및 장단점 분석	7-12학년 전영역
				평가 문항의 수준 분석	7-12학년 전영역
		아기 이로(이기)		양자역학적 현상 이해 (흑체복사, 광전효과, 원자 스펙트럼, 입자-파동 이중성, 불확정성 원리 등)	12학년-화학Ⅱ-원자 구조와 주기율
			로/이기/	양자역학의 기본 가설 및 원리와 슈뢰딩거 방정식 의 이용 및 해석	12학년-화학Ⅱ-원자 구조와 주기율
		8/1 1	양자 이론(원자)	병진, 회전, 진동 운동에 대한 양자화학적 이해	11학년-화학 I -물, 공기
				수소 및 다전자 원자의 구조와 전자간 상호작용의 이해 (수소원자 스펙트럼, 원자 항 기호, 훈트 규칙, 선택 규칙 등)	8학년-과학-물질의 구성 12학년-화학Ⅱ-원자의 구성 입자
교과 내용학	물리 화학 및			분자 오비탈에 관한 이론적 이해와 적용 (보른-오펜하이머 근사, 원자가 결합 이론, 분자 궤도함수 이론 등)	8학년-과학-우리 주위의 화합물 12학년-화학Ⅱ-원자 구조와 주기율
네중위	실험	실험 물질의 구조와 결합	ما (o)	분자 오비탈을 이용한 분자 구조의 이해 (분자궤도함수, 혼성 궤도함수, 휘켈 근사법, 왈쉬 도표, 전자 배치, 분자 항 기호 등)	12학년-화학Ⅱ-원자 구조와 주기율
				분자 대칭성을 이용한 군론의 적용 (LCAO-MO 형성, 구조·오비탈·상태 표시 등)	12학년-화학Ⅱ-원자 구조와 주기율
				이온 결합과 금속 결합의 원리(격자 에너지, 띠 구조 등)	8학년-과학-우리 주위의 화합물

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			분자 분광학의 일반론 (흡수, 발광, 산란, 전이 쌍극자 모멘트와 전이 등)	12학년-화학Ⅱ-화학결합
		분자 분광학	회전 및 진동 스펙트럼의 이해와 적용 (선택 규칙, 스펙트럼 특징, 진동-회전 전이, 흡수와 라만 산란, 진동 기준 방식 등)	11학년-화학 I -공기 12학년-화학Ⅱ-화학결합
			전자 스펙트럼의 이해와 적용 (프랭크-콘돈 원리, 선택 규칙, 전자 스펙트럼의 특징, 형광·인광, 해리, 광화학 등)	11학년-화학 I -현대 화학과 우리 생활 12학년-화학Ⅱ-산과 염기(지시약 색)
			분자의 병진·회전·진동 운동과 전자에 대한 볼츠만 분포와 파티션 함수 이해	7학년-과학-상태 변화와 에너지
			파티션 함수와 열역학 함수와의 관계 (내부에너지, 엔트로피, 열용량 등)	7학년-과학-상태 변화와 에너지
		열역학	일, 열, 에너지와 열역학 제 1 법칙 (열과 엔탈피, 기체의 등온·등압 변화, 가역·비가역 과정 등)	12학년-화학Ⅱ-화학반응과 에너지
			열역학 제 2, 3 법칙의 이해 및 적용 (엔트로피, 열기관 효율 등)	12학년-화학Ⅱ-화학 반응과 에너지
	П)		변화의 자발성과 깁스 자유에너지 (헬름홀츠 에너지, 화학 퍼텐셜 등)	12학년-화학Ⅱ-화학 반응과 에너지
교과 내용학	물리 화학 및 실험		상평형 및 상변화의 원리	7학년-과학-물질의 세 가지 상태 7학년-과학-상태 변화와 에너지 11학년-화학 I -액체와 기체 사이의 상변화
		평형 변화	혼합과 관련된 열역학 에너지 (용해, 삼투압·끓는점 오름·어는점 내림 등 총괄성)	9학년-과학-물질의 특성 11학년-화학 I -용해도에 영향을 주는 요인 11학년-화학 I -용액의 끓는점 오름
			기체 및 용액의 이상성과 비이상성 (라울의 법칙, 헨리의 법칙)	11학년-화학 I -용해 현상
			화학 평형의 원리	11학년-화학 I -용해도에 영향을 주는 요인 12학년-화학Ⅱ-화학 평형
			전기화학에서의 열역학	9학년-과학-전해질과 이온 11학년-화학 I -금속의 반응성과 부식 12학년-화학Ⅱ-산화·환원 반응
			기체 분자 운동론, 기체 및 액체 분자의 움직임 (충돌, 분출, 이동도, 전도도, 확산, 점성 등)	7학년-과학-분자의 운동 11학년-화학 I -기체 상태 방정식, 확산 속도와 분자량

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			반응속도의 정의, 반응속도 법칙, 반응 차수, 반응의 종류, 반응 속도의 측정 등	10학년-과학-화학 반응에서의 규칙성 10학년-과학-여러 가지 화학 반응 11학년-화학 I -화학 반응에서의 양적 관계 12학년-화학Ⅱ-반응 속도
	물리 화학 및 실험	평형 변화	반응 메커니즘의 이해 (단위반응, 다단계 반응, 근사법, 동위원소 효과, 전이 상태 이론, 퍼텐셜 에너지 표면 등)	12학년-화학Ⅱ-반응 속도
			복잡한 반응의 속도 (효소 촉매 반응, 사슬반응, 고분자 반응, 광화학 반응 등)	10학년-과학-여러 가지 화학 반응
			표면 흡착 및 탈착, 흡착 및 탈착 속도, 표면 촉매 활성	10학년-과학-여러 가지 화학 반응
		구조와 결합	루이스 구조의 이론과 구조, 옥텟 규칙	11학년-화학 I -화학과 인간 12학년-화학Ⅱ-물질의 구조
	유기화학		공명 구조의 원리, 공명 구조 그리기	無
			혼성궤도의 원리, 탄소 및 질소, 산소 원자 및 분자 구조에 적용	無
교과 내용학			결합의 종류, 결합길이, 결합력	11학년-화학 I -주변의 물질 11학년-화학 I -화학과 인간 12학년-화학Ⅱ-물질의 구조
			전기음성도 차이, 극성도, 분자간의 힘	11학년-화학 I -화학과 인간 12학년-화학Ⅱ-물질의 구조
			콘쥬게이션의 개념, 콘쥬게이션 구조 및 성질	無
		학 산과 염기	유기산 염기의 종류 및 구조, 산 염기의 세기	12학년-화학Ⅱ-화학반응
	및		산염기 반응, 루이스 산 염기 반응	12학년-화학Ⅱ-화학반응
	실험		산염기 세기와 구조의 관계, 세기 비교	無
		입체화학	입체화학의 정의, 구조 분석	無
			입체화학과 물리적 성질과 분자간 관계	無
			입체화학과 화학적 성질과 분자간 관계	無
		작용기와 반응성 및 반응 형태	알케인(alkane)화합물의 구조, 결합과 반응성, 합성 방법	11학년-화학 I -화학과 인간
			알킨(alkene)화합물의 구조, 결합과 반응성, 합성 방법	11학년-화학 I -화학과 인간
			알카인(alkyne)화합물의 구조, 결합과 반응성, 합성 방법	11학년-화학 I -화학과 인간
			할로겐 화합물의 구조와 성질, 결합과 반응성, 합성 방법	11학년-화학 I -화학과 인간

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
		작용기와 반응성	알코올 및 아민화합물의 구조와 성질, 결합과 반응성, 반응 메커니즘	11학년-화학 I -화학과 인간
			방향족 화합물의 구조와 성질, 결합 과 반응성, 반응 메커니즘	11학년-화학 I -화학과 인간
		및 반응 형태	에테르화합물의 구조와 성질, 결합 과 반응성, 반응 메커니즘	11학년-화학 I -화학과 인간
			카르보닐 및 카르복시산 유도체화합물의 구조와 성질, 결합 과 반응성, 반응 메커니즘	11학년-화학 I -화학과 인간
			유기금속 화합물의 결합, 반응성, 합성에 적용	無
			치환반응의 종류 및 반응성, 합성에 적용	無
			산화 환원반응, 산화수 개념, 산화 환원 반응 종류	12학년-화학Ⅱ-화학반응
		유기반응	라디칼 반응, 라디칼 생성 메커니즘 및 반응 메커니즘	無
	유기화학	및 화학 합성 및	첨가반응의 종류, 반응 메커니즘	無
	및		축합반응의 종류, 반응 메커니즘	無
	실험		유기합성의 고안 및 반응 적용	無
			유기 고분자 합성	無
교과 내용학			고리형 협동반응(pericyclic reaction): HOMO, LUMO, 방향성, cycloaddition 반응	無
		유기분자구조결정법	mass, IR, UV, NMR 분광법, 스펙트럼 해석과 유기분자 구조결정	無
		생체유기화합물	지질 화합물의 구조, 물리적 화학적 성질과 합성	無
			탄수화물 화합물의 구조, 입체화학, 반응 및 합성	無
			아미노산 종류 및 구조, 펩타이드 합성 반응	無
			유기화합물 분리의 원리. 실험 고안, 유기 실험을 수행	無
		유기화학 실험	유기작용기 변환 반응, 실험 수행	無
			유기 합성 실험 수행	無
			유기정성분석, 스펙트럼 분석, 동정	無
			루이스 점 구조 및 원자 껍질 전자쌍 반발 이론	12학년-화학Ⅱ-화학결합
	무기 화학		분자궤도함수 표현: 동핵 및 이핵 이원자 분자와 다원자 분자	無
	및 실험	및 분자구조및 결합론	회절(X-선 결정학) 또는 분광학(마이크로파 및 적외선)실험 및 자료 분석	無

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			대칭 요소와 대칭 조작	12학년-화학Ⅱ-화학결합
			점군	12학년-화학Ⅱ-화학결합
		대칭성과 군론	군의 특성과 표현	無
			대칭성의 응용: 광학 활성도, 라만 및 적외선 스펙트럼 이해, 분자궤도함수 완성	無
			결정성 고체의 구조	11학년-화학 I -금속 12학년-화학Ⅱ-기체,액체,고체
		o) e) e)	이온 결정 형성의 열역학	11학년-화학 I -금속 12학년-화학Ⅱ-화학결합
		고체화학	띠구조와 반도체 및 초전도체	10학년-과학-생활속의 화합물 11학년-화학 I -금속 12학년-화학Ⅱ-화학결합
			고체의 결함	無
			산-염기 개념	10학년-과학-산과염기의 반응 12학년-화학Ⅱ-산과 염기의 반응
		산 염기화학	하드-소프트 산과 염기	無
77	무기 화학		산과 염기의 세기	10학년-과학-산과염기의 반응 12학년-화학Ⅱ-산과 염기의 반응
교과 내용학	및 실험	배위화학 (결합 및 전자스펙트럼)	결합 이론: 원자가 결합이론, 결정장 이론 및 리간드장 이론	11학년-화학 I -금속 12학년-화학Ⅱ-화학결합
			자기적 특성	11학년-화학 I -금속 12학년-화학Ⅱ-화학결합
			전자 스펙트럼	無
			배위수, 배위구조 및 이성질 현상	無
		배위화학	치환반응	無
		(구조와 이성질체,	반응 메커니즘	無
		반응 및 메커니즘)	산화·환원반응	11학년-화학 I -금속 12학년-화학Ⅱ-산화·환원반응
		주기율표와 원소	주족 금속원소, 비금속원소, 희토류 원소 및 영족원소	11학년-화학 I -금속 12학년-화학Ⅱ-원자구조와 주기율표
			전이금속원소	11학년-화학 I -금속 12학년-화학Ⅱ-원자구조와 주기율표
			주기성: 물리적 성질, 전기음성도, 크기 및 화학적 특성	11학년-화학 I -금속 12학년-화학Ⅱ-원자구조와 주기율표

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			유기 리간드와 명명법	11학년-화학 I -탄소화합물
			리간드에 따른 유기금속화학: σ 및 π 결합	無
	[[기 원칙	유기금속 화학, 촉매 및 생무기화학	합성 및 특성: 반응성, 스펙트럼 분석 및 구조 확인	無
	무기 화학 및	국에 옷 '8구기와릭	유기금속의 촉매반응	無
	실험		포피린 및 비포피린 계 착화합물과 금속 효소	無
		무기화학실험	금속 염 및 배위금속 착화합물의 합성 및 이성질현상, 분광학적 성질 등 특성 분석	10학년-과학-생활속의 화합물 11학년-화학 I -금속 12학년-화학Ⅱ-화학결합
			SI 단위의 종류, 단위의 환산, 크기를 나타내는 접두어 사용	8학년-과학-물질의 특성
		22 200 1-	화학 농도의 종류, 화학양론 계산	12학년·화학Ⅱ-물질의 상태와 용액 9학년·과학-물질변화에서의 규칙성
		화학 분석의 기초	유효 숫자의 처리, 오차의 종류, 불확정도의 전파	無
			측정값에 대한 통계 처리	無
			검정을 위한 표준 곡선법, 표준물 첨가법, 내부 표준법의 사용	無
		j.	평형 상수의 처리, 평형과 열역학의 관계	無
교과 내용학			침전 평형의 이해와 적용, 난용성 염의 용해도 특성, pH에 따른 용해도의 변화	11학년-화학 I -주변의 물질 10학년-과학-물질
,, ,	분석 화학 및 실험		공통 이온 효과, 용해도에 대한 이온 세기의 영향, 활동도를 고려한 평형의 처리	無
			부피 분석과 무게 분석의 이해와 적용 및 계산	12학년-화학Ⅱ-화학반응
			착물 형성 평형의 응용, 킬레이트 효과, 보조 착화제의 이용, EDTA 적정 방법	無
			산-염기의 정의와 세기 비교, pH의 정의와 적용	12학년-화학Ⅱ-화학반응 12학년-화학 I -주변의 물질 10학년-과학-물질
		산-염기 평형과	일양성자성계 및 이양성자성계의 산-염기 평형 이 해와 적용, 분율 조성, 등전 pH, 등이온 pH의 이해	12학년-화학Ⅱ-화학반응
		적정	완충 작용의 이해와 응용, 완충 용액의 제조와 관련 계산	12학년-화학Ⅱ-화학반응
			산-염기 적정, 적정 곡선의 이해와 응용	12학년-화학Ⅱ-화학반응
			평준화 효과와 비수용액에서의 산-염기 평형	無
		산화-환원 반응과 전기분석 화학	산화-환원 평형의 응용과 산화 상태의 조절	12학년-화학Ⅱ-화학반응 12학년-화학 I -주변의 물질

구분	기본 이수과목 및 분야	평가 영역	평가 내용 요소	중등학교 교육과정 관련성
			산화-환원 적정과 응용	無
		산화-환원 반응과 전기분석 화학	화학 전지, 표준 환원 전위, 네른스트 식, 표준 전위와 평형 상수와의 관계	12학년-화학Ⅱ-화학반응
		선기군식 와막	전극과 전위차법, 전해 무게 분석법, 전기량법, 전압 전류법의 이해와 응용	無
		석 화학 기기분석의 이해 및 실험 분석화학 실험	전자기파의 기본 성질, 분광 광도계, Beer의 법칙	10학년-과학-에너지 7학년-과학-빛
교과	분석 화학		분자 흡수 분광법(UV-VIS, IR)의 이해와 응용, 형광 광도법의 이해와 응용	無
내용학			원자 분광법의 이해와 응용	9학년-과학-물질의 구성
	실업		크로마토그래피 분리법과 모세관 전기 이동법의 이해와 응용	12학년-화학Ⅱ-물질의 상태와 용액 8학년-과학-혼합물의 분리
			시료 채취, 시료 제조, 시료 전처리	無
			실험 기구의 용도와 사용법	無
			용액의 제조	12학년-화학Ⅱ-물질의 상태와 용액
			여러 가지 적정법 실험	12학년-화학Ⅱ-화학반응
			무게 및 연소 분석법 실험	無
			실험실 안전	無