

우주강국으로 가는 길 패널 토론 자료

이 태 식 교수 한양 대학교 교수 국제우주탐사연구원 원장

제 53 회 과학사랑포럼 2013년 2월 26일(화) 한국과학기술회관 아나이스홀

Why We Go to the Space ?

Human Civilization

- Past : voyage to the new world
- Present : globalization through satellite
- Future : space development through planetary exploration

Global Partnership

- Successful space exploration through international collaboration
- Synergy on sharing resource, technology, human resource

Economic Expansion

- create various value added business
- Economic revitalize by new market

Scientific Knowledge

- Learn about origin of Earth and solar system
- Answer life's most fundamental questions

Exploration Preparation

Opportunities to test new technologies, experience for space exploration Learn ways to use resources found in space

Public Engagement

- Inspire next generation to learn science, technology, engineering, math
- Learn real life applications of science technology

World Investment in Space Sector

 World investment of space industry is extremely increase for 2000s
 US and Russia's satellite navigation system and communication satellite, and investment by space developing country lead to space industry expansion

Investment of Korea for space field is 1/70 of NASA, and 1/9 of JAXA

Fiscal Plans for Space Developed Country

Budget Proportion of NASA's Space Exploration

- Total Investment is \$19 billion in 2011, space exploration investment is \$4.2 billion (23%)
- NASA ISRU is comprised in Exploration Technology and Demonstrations, and budget is \$1.5 billion (8.2%)

Budget Authority (\$M)	FY 2010		FY 2011 Annualized CR		FY 2011 Authorization Act		FY 2012		FY 2013	FY 2014
Science	4,498	24%	4,469	24%	5,006	26%	5,017	27%	5,017	5,017
Aeronautics	497	3%	501	3%	580	3%	569	3%	569	569
Space Technology	275	1%	327	2%	512	3%	1,024	5%	1,024	1,024
Exploration System	3,626	19%	3,594	19%	3,706	20%	3,949	21%	3,949	3,949
Space Operation	6,142	33%	6,147	33%	5,508	29%	4,347	23%	4,347	4,347
Education	180	1%	183	1%	146	1%	138	1%	138	138
Cross-Agency Support	3,018	16%	3,019	16%	3,111	16%	3,192	17%	3,192	3,192
CoF and ECR	453	2%	448	2%	394	2%	450	2%	450	450
Inspector General	36	0%	36	0%	37	0%	38	0%	38	38
NASA FY 2012	18,724	100%	18,724	100%	19,000	100%	18,724	100%	18,724	18,724

Fiscal Plans for Space Developed Country

Budget Proportion of CSA's Space Exploration

- Total Investment is \$3,700 million in 2011, space exploration investment is \$1,600 million (41%)
- CSA focus on exploration system instead of space vehicle
- CSA invests on lunar exploration rover about \$1,100 million(10%of total budget) for involving International Space Exploration Coordination Group(ISECG)

	PROGRAM ACTIVITY ALIGNMENT TO GOVERNMENT OF CANADA OUTCOMES (\$M)									
		Forecast		P	lanned					
	Program Activity	Spending 2009 - 2010	2010-2011		2011-2012		2012-2013		Government of Canada Outcomes	
	Space Based Earth Observation (EO)	84.2	88.7	23%	108.4	29%	106.2	34%	A Clean and Healthy Environment	
	Space Science and Exploration (SE)	145.7	185.4	47%	156.1	41%	95.9	31%	A Strong and Mutually Beneficial North American Partnership	
	Satellite Communications (SC)	17.7	19.7	5%	14.4	4%	11.7	4%	A Safe and Secure Canada	
	Generic Technological Activities In Support of EO, SE and SC	54.3	46.2	12%	48.4	13%	48.9	16%	An Innovative and Knowledge-Based Economy	
	Space Awareness and Learning (AL)	9.3	8.1	2%	8.2	2%	8	3%	A Vibrant Canadian Culture and Heritage	
유외	Internal Services	46.2	42.8	11%	42.9	11%	42.1	13%	Not Applicable	
우봉시	TOTAL	357.3	390.8	100%	378.4	100%	312.7	100%		
년기(음·	중영연구환			0						

NASA Exploration Technology Development

NASA Space Technology Investments

- Space Technology investments enable future human and scientific exploration of near-Earth asteroids, the Moon, and Mars, just as current and past mission successes were supported by previous technology investments.
- Significant progress in technology areas such as space power systems, entry, descent, and landing systems, propulsion, radiation protection, and cryogenic fluid handling are essential for space exploration beyond low Earth orbit.

NASA Exploration Technology Development

Expanding Human Presence Into the Solar System

The Exploration Technology Development Program (ETD Program) develops long-range technologies to enable human exploration beyond Earth orbit

ETD Program also integrates and tests advanced exploration systems to reduce risks and improve the affordability of future missions

NASA ISRU

NASA In-Situ Resource Utilization (ISRU)

Lunar ISRU

- Cost of Transportation to the Moon is US \$2million/kg
- Space development needs lots of materials and using resource on site is required
- To succeed ISRU process, various technologies should be integrated

Benefits of ISRU

- Produce science and exploration hardware instead of consumables
- Increased safety, crew exploration time, and self-sufficiency
- Technology spin-in/spin-offs help recycling on Earth & Space economy

Why ISRU into Space Exploration Roadmap

NASA ISRU

- NASA and International Mission statements calls for the sustainable human exploration of the Moon, Near-Earth asteroids, and Mars
- Common Exploration Goals and Objectives are Strongly influenced by ISRU
 - Extend Human Presence: Continually increase the duration and level of self sufficiency at all destinations
 - Develop Exploration Technologies and Capabilities: Develop and validate tools, technologies, and systems that extract, process, and utilize resource to enable exploration missions
 - Perform Science to Support Human Exploration: Characterize available resources at destinations
 - Stimulate Economic Expansion: Encourage commercial services and create new markets, including markets for discovered resources
 - > Enhance Earth Safety: Test techniques to mitigate the risk of asteroid collisions with Earth

슬경영연구원

Source: Gerald Sanders, Benefits to Space Exploration from In-Situ Resource Utilization with Lunar Surface and L1/L2 Propellant Refueling, 2012 GLEX Conference

NASA ISRU

ISRU Main Areas

과우봉사단

한국기술경영연구원

Main Areas of ISRU and Applicable Mission Elements

	-							
	EVA	Life Support	Power	Propulsion	Manufact- uring	Habitats	Science	
Resource Characterization & Mapping								
Geotechnical & mineral characterization	X				Х	Х	X	
Water/volatile characterization in regolith/so	X	X	X	X			X	
Consumable Production								
Oxygen	X	X	X	X		Х		
Hydrogen		X	x	X				
Methane			X	X				
Water	X	X				X		
Nitrogen		X				Х	X	
Cleaning & Inert Gases (CO2, He)	X						х	
Plant growth media & feedstock		X						
Manufacturing feedstock					X			
Energy Production & Storage								
Thermal energy storage & gen			X			Х		
Electrical energy gen			X					
Manufacturing & Reuse								
Part fabrication					X			
Hardware scavenging & recycling					X			

Manned Mission Elements

- For ISRU Systems and capabilities to be effective, multiple surface elements must be integrated

- Civil Engineering & Construction is one of the main areas of ISRU

Oxygen Extraction from Regolith for Energy

Excavation rate required for 10MT O₂/yr

- Hydrogen reduction at poles(~1% extraction efficiency) : 150kg/hr
- Carbothermal reduction(~14% extraction efficiency) : 12kg/hr
- Small excavators(<200kg) can excavate 150 to 200kg/hr

10 MT of oxygen per year requires excavation of soccer field to a depth of 0.6 to 8cm(1% and 14% efficiencies)

10 MT of oxygen per year requires a regolith excavation rate of ~ 4

cups per minute

Strategy for Lunar Exploration with ISRU

NASA ISRU

한국기술경영연구원

Three Parts to Analyzing the Impact of ISRU on Exploration Programs

- Propellants/Consumables: What are the propellants/consumables that can be made and what form/where are the products used/delivered?
- Infrastructure: What is the mass, power, volume of ISRU plant and infrastructure (power, storage tanks, etc.) to make the propellants?
- Cost of ISRU: What is considered when determining the cost of ISRU vs. Non ISRU program? Only ISRU unique development or all infrastructure required? Are launch costs considered?

Process to demonstrate ISRU ability to support Lunar Exploration

- Step 1: Perform robotic precursors for resource characterization and critical technology assessments
 - Lunar regolith excavation, oxygen extraction, and O₂ storage and transfer
 - Water/volatile characterization, extraction, and processing into O₂/Fuel
- > Step 2: Perform Pilot operations in Early short duration missions
 - Pre-deploy and produce product before crewed missions to minimize risk
 - Life support and radiation shielding consumables to extend mission or increase science/exploration equipment delivery
- Step 3: Deploy full scale operations; Increase commercial involvements

History of Lunar Outpost Concept

Various Lunar Outpost Concept (1988~ 1992)

History of Lunar Outpost Concept

Various Lunar Outpost Concept (1992~ 2012)

History of Lunar Outpost Concept

Space construction

Lunar Simulant and Lunar Concrete

Lunar Simulant KOHLS-1(left) and SEM image(right)

Lunar Concrete Prototype

- Lunar soil is fundamental for lunar surface exploration
- ISERI developed lunar simulant KOHLS-1 as 5th country
- ISERI is focusing on developing appropriate chemical composition of lunar simulant

- Using in-situ material is important to building structures on lunar surface
- ISERI developed lunar concrete by using lunar simulant
- Performance of lunar concrete is proper to use structural materials

Construction on the Lunar Surface

- To prevent lunar dust problem, lunar landing pad is required for lunar development
- ISERI is conceiving lunar landing pad construction by assembling of single lunar concrete mold
- Structural analysis and fabricating single mold prototype is on going

Fabricate Single Mold and Strength Test

Construction Technology by 3D Printing

Combining lunar concrete technology and 3D printing technology derive unmanned automation construction on the Moon
 It is able to build various shape of structure

- > 3D Printing Construction spend low cost (\$4,000) to build house
- It can figure out housing problems in underdeveloped country

Solar Power

Lunar Solar Power Generation

- Construct solar panels on the Moon's far side to collect solar energy and transmit to the Earth
- No Pollution, Green Energy, Sustainable Energy

과우외 과우평사단

까국기술경영연구원

- Solar highway can be a renewable source of energy and extend life span of road
- > 1000MW nuclear power plant is substituted by
 200km of solar highway
- New concept of sustainable energy development using existing facilities without natural damage
 - Sustainable Engineering

Thank You

