"°úÇй®È­±³À°"

2007-05-25 (Vol 4, No 5)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 25(8), 2003

-------------------------------------------------------------------------------
Making authentic science accessible to students.
Lee, Hee-Sun,
Butler, Nancy

Authentic activities are important in promoting inquiry because they provide natural problem-solving contexts with high degrees of complexity. This study designed and studied effective inquiry tasks through transforming content, scientific thinking, and resources featured in scientists' authentic practices. This study investigated how 59 inner-city 6th grade students performed in real-time forecasting situations involving fronts and pressure systems. Forecasts were evaluated in terms of prediction agreement, meteorological entity consideration, explanation type, and scientific knowledge use because these four categories reflected inquiry features emphasized in the forecasting task. Results show that real-world situations that mapped closely onto students' content understandings, rather than those with naturally occurring complex patterns, helped students perform inquiry. Key ideas discussed in this paper include the importance of using authentic situations to develop rich understandings about scientific knowledge and the design of tasks that prepare students to participate in social practices valued by the science community

Çлý¿¡°Ô Á¢±Ù °¡´ÉÇÑ ÂüµÈ °úÇÐÇϱâ

ÂüµÈ °úÇÐ È°µ¿Àº ÀÚ¿¬ÀÇ ¹®Á¦ÇØ°á ¸Æ¶ô¿¡ ³ôÀº ¼öÁØÀÇ º¹À⼺À» Á¦°øÇØÁֱ⠶§¹®¿¡ Ž±¸¸¦ ÁõÁø½ÃÅ°´Âµ¥ À־ Áß¿äÇÏ´Ù. ÀÌ ¿¬±¸´Â °úÇÐÀÚµéÀÇ ÂüµÈ È°µ¿¿¡¼­ ³ªÅ¸³­ ³»¿ë, °úÇÐÀû »ç°í¿Í ÀڷḦ º¯ÇüÇÔÀ¸·Î½á È¿°úÀûÀΠŽ±¸ È°µ¿À» ¼³°èÇÏ°í ¿¬±¸ÇÑ´Ù. ÀÌ ¿¬±¸´Â 59¸íÀÇ µµ½ÃÀÇ 6Çгâ ÇлýµéÀÌ Àü¼±°ú ±â¾Ð ½Ã½ºÅÛ¿¡ °ü·ÃµÈ ½Ç½Ã°£ Àϱ⿹º¸ »óȲ¿¡¼­ ¾î¶»°Ô ¼öÇàÇÏ´ÂÁö¸¦ Ž»öÇß´Ù. Àϱ⿹º¸´Â ¿¹º¸ ÀÏÄ¡, ±â»óÀÇ ½ÇÁ¦ °í·Á, ¼³¸í ¹æ½Ä°ú °úÇÐÀû Áö½ÄÀÇ »ç¿ëÀ¸·Î Æò°¡µÇ¾ú´Âµ¥, ÀÌ´Â ÀÌ ³× °¡Áö ¹üÁÖ°¡ Àϱ⿹º¸¸¦ ÇÏ´Â È°µ¿¿¡¼­ °­Á¶µÈ Ž±¸ Ãø¸éÀ» ¹Ý¿µÇϱ⠶§¹®À̾ú´Ù. ¿¬±¸ °á°ú´Â ÀÚ¿¬ÀûÀ¸·Î ÀϾ´Â º¹ÀâÇÑ ÆÐÅÏ°ú °ü·ÃµÈ °Íº¸´Ù ÇлýµéÀÇ ³»¿ë ÀÌÇØ¿¡ ¹ÐÁ¢ÇÏ°Ô ³ªÅ¸³­ ½Ç¼¼°è »óȲÀÌ ÇлýµéÀÌ Å½±¸¸¦ ¼öÇàÇϴµ¥ µµ¿òÀ» ÁÖ¾ú´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù. ÀÌ ³í¹®¿¡¼­ ³íÀÇµÈ ÁÖ¿äÇÑ ¾ÆÀ̵ð¾îµéÀº °úÇÐÀû Áö½Ä¿¡ ´ëÇÑ Ç³ºÎÇÑ ÀÌÇظ¦ ¹ßÀü½ÃÅ°±â À§Çؼ­ ÂüµÈ »óȲÀ» »ç¿ëÇÏ´Â °ÍÀÇ Á߿伺°ú ÇлýµéÀÌ °úÇÐ °øµ¿Ã¼¿¡ ÀÇÇؼ­ Æò°¡µÇ´Â »çȸÀû È°µ¿µé¿¡ Âü¿©Çϵµ·Ï Áغñ½ÃÄÑÁÖ´Â ÀϵéÀÇ ¼³°è¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Ù.
----------------------------------------------------------

Gender issues related to graduate student attrition in two science departments

This study explored the gender issues that contributed to the differential attrition rate of men and women graduate students in two science departments (biology and chemistry) at a large research university. Departmental records were used to compute the student attrition rate while surveys from 170 students, and interviews with 32 of them, were used to explore students' perspectives on the reasons affecting the attrition of men and women graduate students in each department. Analysis of the data indicated a significantly larger student attrition rate in chemistry than in biology. In each department the attrition rate for women was also significantly larger than the attrition rate for men. The study uncovered different gender issues, in each department, related to the significantly larger attrition rate for women students.

µÎ °³ÀÇ °úÇÐ ¿µ¿ª¿¡¼­ ´ëÇпø Çлý °¨¼Ò¿¡ °ü·ÃµÈ ¼ºº° À̽´

ÀÌ ¿¬±¸´Â Å« ´ëÇп¡¼­ µÎ °³ÀÇ °úÇÐ ¿µ¿ª(»ý¹°°ú È­ÇÐ)¿¡¼­ ³²³à ´ëÇпø Çлý ºñÀ²ÀÇ Æ¯º°ÇÑ °¨¼ÒºñÀ²¿¡ ¿µÇâÀ» ÁØ ¼ºº° À̽´µéÀ» Ž»öÇÑ °ÍÀÌ´Ù. ÇлýµéÀÇ °¨¼Ò ºñÀ²À» °è»êÇϱâ À§ÇÏ¿© ÇаúÀÇ ±â·ÏÀ» »ç¿ëÇÏ¿´°í, °¢ Çаú¿¡¼­ ³²³à ´ëÇпø ÇлýµéÀÇ °¨¼Ò¿¡ ¿µÇâÀ» ÁÖ´Â ¿äÀε鿡 ´ëÇÑ ÇлýµéÀÇ °üÁ¡À» ¾Ë¾Æº¸±â À§ÇÏ¿© Çлý 170¸íÀÇ ¼³¹®, 32¸í¿¡ ´ëÇÑ ¸é´ã µîÀ» »ç¿ëÇÏ¿´´Ù. µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿´´õ´Ï »ý¹°º¸´Ù È­Çп¡¼­ »ó´çÈ÷ ´õ Å« °¨¼ÒÀ²À» ³ªÅ¸³»¾ú´Ù. °¢ ¿µ¿ª¿¡¼­ ¿©ÀÚ °¨¼ÒÀ²Àº ¶ÇÇÑ ³²ÀÚ °¨¼ÒÀ²º¸´Ù »ó´çÈ÷ ´õ ÄÇ´Ù. ÀÌ ¿¬±¸´Â °¢ ¿µ¿ª¿¡ ´ëÇؼ­ ¿©ÇлýÀÇ Å« °¨¼ÒÀ²¿¡ °ü·ÃµÈ ´Ù¾çÇÑ ¼ºº° À̽´µéÀ» µå·¯³»¾ú´Ù.
-----------------------------------------------------------

Understanding and affecting student reasoning about sound waves.

Wittmann, Michael

Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources , i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.

À½ÆÄ¿¡ ´ëÇÏ¿© ÇлýµéÀÇ Ãß·ÐÀ» ÀÌÇØÇÏ°í ¿µÇâÀ» ¹ÌÄ¡±â

À½ÆÄ¿¡ ´ëÇÑ ÇлýµéÀÇ ÇнÀÀº ±×·ì-ÇнÀ ÀÚ·áÀÇ »ý¼ºÀ» ÅëÇؼ­ µµ¿òÀ» ¹ÞÀ» ¼ö Àִµ¥, ±× °³¹ß°ú ¼³°è´Â ÇлýµéÀÇ ÀÌÇØ¿¡ ´ëÇÑ ¸í¹éÇÑ Å½»ö¿¡ ´Þ·ÁÀÖ´Ù. ¿ì¸®´Â Ãß·ÐÀ» ´Ù¾çÇÑ ¼ÂÀÇ ÀÚ·áµé·Î ¹¦»çÇÑ´Ù. ¿ì¸®´ëÇÐÀÇ ¹°¸® °­ÀÇÀÇ ÇлýµéÀº Á¾Á¾ ¿ì¸®°¡ ÇлýµéÀÌ »ç¿ëÇϱ⸦ ¿øÇÏ´Â °Í°ú ´Ù¸¥ ÀÚ·áµéÀ» »ç¿ëÇÏ¿´´Ù. Çлýµé¿¡°Ô ´Ù¾çÇÑ °üÁ¡À¸·ÎºÎÅÍ ¹°¸®¿¡ ´ëÇؼ­ »ý°¢Çϵµ·Ï ¿äûÇÏ´Â ±³À°°úÁ¤ ÀڷḦ ¼³°èÇÔÀ¸·Î½á ¿ì¸®´Â ÇлýµéÀÇ À½ÆÄ¿¡ ´ëÇÑ ÀÌÇØ¿¡¼­ÀÇ °³¼±À» °¡Á®¿Ô´Ù. ¿ì¸®ÀÇ ±³À°°úÁ¤ º¯°æÀº ¿ì¸® ÀÚ½ÅÀÇ °­ÀÇ¿¡ ÇÑÁ¤ÀûÀÎ °ÍÀÌÁö¸¸ ÇлýµéÀÇ ÇнÀ¿¡ ´ëÇÑ ¿ì¸®ÀÇ ¹¦»ç´Â ±³»çµé¿¡ ´ëÇÏ¿© ÀϹÝÀûÀ¸·Î ´õ À¯¿ëÇÏ´Ù. ¿ì¸®´Â ÇлýµéÀÌ ±×µéÀÇ »ç°í°úÁ¤¿¡¼­ ¾î¶»°Ô ´Ù¾çÇÑ ¼ÂÀÇ ÀÚ·áµéÀ» »ç¿ëÇÒ ¼ö ÀÖ´ÂÁö ¹¦»çÇÏ¿´°í, °­»çµé°ú ¿¬±¸ÀÚµé ¸ðµÎ¿¡ ÀÇÇؼ­ °í·ÁµÇ¾î¾ß¸¸ ÇÏ´Â Áú¹®µéÀ» Á¦½ÃÇÏ¿´´Ù.
------------------------------------------------------

Student learning of thermochemical concepts in the context of solution calorimetry

Greenbowe, Thomas
Meltzer, David

Student understanding of heat and thermal phenomena has been the subject of considerable investigation in the science education literature. Published studies have reported student conceptions on a variety of advanced topics, but calorimetry - one of the more elementary applications of thermochemical concepts - has apparently received little attention from science education researchers. Here we report a detailed analysis of student performance on solution calorimetry problems in an introductory university chemistry class. We include data both from written classroom exams for 207 students, and from an extensive longitudinal interview series with a single subject who was herself part of that larger class. Our findings reveal a number of learning difficulties, most of which appear to originate from failure to understand that net increases and decreases in bond energies during aqueous chemical reactions result in energy transfers out of and into, respectively, the total mass of the resultant solution.

¿ë¾× ¿­·®ÃøÁ¤¹ýÀÇ ¸Æ¶ô ¼Ó¿¡¼­ ¿­È­ÇйÝÀÀ °³³äÀÇ ÇнÀ

¿­°ú ¿­ÀÇ Çö»óÀÇ Çлý¿¡ ´ëÇÑ ÀÌÇØ´Â °úÇб³À°¿¬±¸¿¡¼­ Áß¿äÇÑ ¿¬±¸ÀÇ ÁÖÁ¦À̾ú´Ù. ÀÌÀüÀÇ ¿¬±¸µéÀº ´Ù¾çÇÑ ÁÖÁ¦¿¡ ´ëÇؼ­ ÇлýµéÀÇ °³³äÀ» º¸°íÇß´Ù. ÇÏÁö¸¸ ¿­·®ÃøÁ¤ - ¿­È­ÇйÝÀÀ °³³ä¿¡¼­ °¡Àå ±âº»ÀûÀÎ °Í Áß Çϳª - Àº °úÇб³À° ¿¬±¸ÀڷκÎÅÍ ´ú °ü½ÉÀ» ¹Þ¾Æ¿Ô´Ù. ±×·¡¼­ ¿ì¸®´Â ´ëÇб³ÀÇ ÀÏ¹Ý È­ÇÐ °­ÀÇ¿¡¼­ ÇлýµéÀÇ ¿ë¾× ¿­·®ÃøÁ¤ ¹®Á¦¿¡ ´ëÇÑ ¼¼ºÎ ºÐ¼®À» ½Ç½ÃÇÏ¿´´Ù. ¿ì¸®´Â 207¸íÀÇ ÇлýµéÀÇ ÁöÇÊ ½ÃÇè°ú ±¤´ëÇÑ Á¾´ÜÀû ¸é´ã ÀڷḦ »ç¿ëÇÏ¿´´Ù. ¿¬±¸ °á°ú ¿ì¸®´Â ¸¹Àº ÇнÀÀÇ ¾î·Á¿òÀ» ¹àÇô³»¾ú´Âµ¥, ±×°Íµé Áß ´ëºÎºÐÀº ÇлýµéÀÌ ¹°ÀÇ È­ÇÐ ¹ÝÀÀÀÌ ÀüüÀÇ ÇÕ¼º¿ë¾×À¸·ÎºÎÅÍÀÇ/À¸·ÎÀÇ ¿¡³ÊÁö ÀüȯÀ¸·Î °á°ú°¡ ³ªÅ¸³ª´Â µ¿¾È °áÇÕ¿¡³ÊÁö¿¡¼­ ÃÑ·®ÀÌ Áõ°¡ÇÑ´Ù´Â/°¨¼ÒÇÑ´Ù´Â °ÍÀ» ÀÌÇØÇÏÁö¸¦ ¸øÇϱ⠶§¹®¿¡ ³ªÅ¸³µ´Ù.

÷ºÎ
IJSE_V25_N08(2003).hwp

À̺À¿ì
´Ü±¹´ëÇб³ °úÇб³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò