"°úÇй®È­±³À°"

2007-07-25 (Vol 4, No 7)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 29(7), 2007

---------------------------------------------------------------------
1. The Evaluation of Modelling Competences: Difficulties and potentials for the learning of the sciences
¸ðÇüÈ­ ´É·ÂÀÇ Æò°¡: °úÇÐÇнÀ¿¡¼­ÀÇ ¾î·Á¿ò°ú ÀáÀç·Â

Lopes, J. Bernardino; Costa, Nilza

IJSE 29(7) 811

¸ðÇüÈ­´Â ´Ù¾çÇÑ Æ¯Á¤ ´É·ÂµéÀ» µ¿¿øÇؾßÇÏ´Â, °úÇа³³äÀÇ ±¸¼º°ú È°¿ë¿¡ ÀÖ¾î °íÀ¯ÇÑ °úÁ¤ÀÌ´Ù. ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ¹°¸® ±³¼ö¿Í °úÇб³À° ¿¬±¸¿Í °ü·ÃÇÏ¿© ¸ðÇüÈ­ ´É·ÂÀ» Æò°¡ÇÏ´Â ¼ö´ÜÀ» µµÃâÇÏ´Â °ÍÀÌ¸ç ¸ðÇüÈ­ ´É·Â °³¹ß¿¡ À־ÀÇ ÀáÀ缺°ú Á¦ÇÑÁ¡À» ¹àÇô³»´Â °ÍÀÌ´Ù. ¿ªÇÐ ¿µ¿ª¿¡¼­ ±¤¹üÀ§ÇÑ ¸ðÇüÈ­ Ãø¸éµéÀ» Æ÷ÇÔÇÏ´Â ÁöÇÊÆò°¡¸¦ ¸¸µé°í Ÿ´ç¼ºÀ» È®ÀÎÇßÀ¸¸ç, ÀÌ·ÐÀûÀ¸·Î ±âÃÊÇÑ Æò°¡ ¹æ¹ý·ÐÀ» ¼­¼úÇÏ¿´´Ù. Ÿ´ç¼º È®ÀÎ °úÁ¤¿¡¼­´Â, ¹°¸®±³À°ÀÇ 7 ¼öÁØ¿¡ °ÉÃÄ ºÐÆ÷ÇÑ 75¸íÀÇ Çлý¿¡°Ô °Ë»ç¸¦ ½Ç½ÃÇÏ¿´´Ù. ÇлýµéÀÇ ÀÀ´äÀ» ºÐ¼®ÇÏ¿´°í ±× ÈÄ ±ºÁýºÐ¼®À» ½Ç½ÃÇÏ¿© ´Ù¾çÇÑ ÀÀ´äÀ» ¹üÁÖÈ­ÇÏ¿´´Ù. ¿¬±¸ °á°ú, °Ë»çÁö´Â ¸ðÇüÈ­ ´É·ÂÀ» È®ÀÎÇÏ°í ¹üÀ§¸¦ ÇÑÁ¤ÇÏ°Ô ÇÏ¿´´Ù. ÀϺΠ°á°ú´Â ´Ù¸¥ ¿¬±¸¿¡¼­ ¾òÀº °á°ú¿Í ÀÏÄ¡ÇÏ¿´°í, ´Ù¸¥ °á°ú´Â ¸ðÇüÈ­ÀÇ Æ¯Á¤ Ãø¸é¿¡ ´ëÇؼ­´Â º¸´Ù Àß ¹àÇô³»¾ú´Ù. ¿¬±¸³ª ±³À°°ú °°Àº ´Ù¸¥ ¹°¸® ¿µ¿ª¿¡¼­ Æò°¡ ¹æ¹ý·ÐÀÌ Àû¿ëµÇ´Â ¹æ¹ý¿¡ ´ëÇؼ­ ³íÀÇÇÏ¿´´Ù. ¶ÇÇÑ ¸ðÇüÈ­ ´É·ÂÀ» °³¹ßÇÏ´Â °úÁ¤¿¡¼­ ¹àÈù Á¦ÇÑÁ¡°ú ÀáÀ缺ÀÌ ¾î¶»°Ô °úÇÐ ±³¼öÇнÀ¿¡¼­ °í·ÁµÇ¾î¾ßÇÏ´ÂÁö¸¦ ³íÀÇÇÏ¿´´Ù.
Modelling is an inherent process for the construction and use of science concepts that mobilize diverse specific competences. The aims of this work are to put forward a means of evaluating modelling competences that is relevant for physics teaching and science education research and to identify the potentials and constraints in the development of modelling competences. A written test, which embraces a wide range of modelling aspects in mechanics domain, was drawn up and validated, and a theoretically based evaluation methodology was specified. In the validation process, the test was given to 75 subjects distributed across seven levels of physics education. The answers were analysed and later cluster analysis was carried out in order to identify categories of answers among the diverse answers. The results indicate that the test identified and delimitated modelling competences. Some results are in agreement with those obtained through other research into this issue and other results better elucidate certain aspects of modelling. The way in which evaluation methodology can be used in other areas of physics is discussed, such as in research and in teaching. Also discussed is how the constraints and potentials identified in the development of modelling competences can be taken into account in teaching and learning sciences.
--------------------------------------------------------------------

2. Explanations and Teleology in Chemistry Education
È­Çб³À°¿¡¼­ÀÇ ¼³¸í°ú ¸ñÀû·Ð

Talanquer, Vicente

IJSE 29(7) 853

¹°¸®°úÇп¡¼­´Â ¸ñÀû·ÐÀû ¼³¸íÀÌ ºÒÇÊ¿äÇÏ¸ç ¾î¶² ¿ªÇÒµµ ¸øÇÑ´Ù´Â °ÍÀÌ ³Î¸® °¡Á¤µÇ¾î ¿Â ¹ÙÀÌ´Ù. ±×·¯³ª Çб³ È­Çб³À°¿¡¼­ ±³»ç¿Í ÇлýÀÇ ±³¼öÀû ¼³¸í¿¡ À־´Â ¸ñÀû·ÐÀÌ »ó´çÈ÷ º¸ÆíÀûÀ̶ó´Â ÁöÀûÀÌ ÀÖ´Ù. ÀÌ ¿¬±¸¿¡¼­´Â ¸ñÀû·ÐÀû ¼³¸íÀÇ ¿ªÇÒ°ú º»¼º¿¡ ´ëÇؼ­ Ž»öÇÏ°í È­Çб³À°¿¡¼­ ±×°ÍÀÇ »ç¿ëÀ» º¸ÀåÇÏ´Â Á¶°Çµé¿¡ ´ëÇؼ­ Ž»öÇÏ¿´´Ù. ¶ÇÇÑ ¸ñÀû·ÐÀû °ßÁö¿¡¼­ È­ÇÐ Çö»óÀÇ ¼³¸íÀ» °³¹ßÇÏ´Â °Í¿¡ ´ëÇÑ ÇнÀ ½Ã»çÁ¡À» ºÐ¼®ÇÏ¿´´Ù. ÀÌ ¿¬±¸´Â ¹Ì±¹ÀÇ ÀüÇüÀûÀÎ È­ÇÐ ±³°ú¼­¿¡ Ç¥ÇöµÈ ÇнÀ ¼³¸í¿¡ ´ëÇÑ Á¤¼ºÀû ºÐ¼®À» ±âÃÊ·Î ÇÏ¿´´Ù. ¿¬±¸ °á°ú, ¸ñÀû·ÐÀû ¼³¸íÀº ÀÌµé ±³°ú¼­¿¡ ³ªÅ¸³ªÀÖÀ¸¸ç È­ÇÐ º¯È­ ¹ß»ý¿¡ ´ëÇÑ ¼³¸íÀû ÀÌÀ¯¸¦ Á¦°øÇÏ´Â °ÍÀ» µ½´Â´Ù´Â °ÍÀ» µå·¯³»¾ú´Ù. ÀÌ°ÍÀÇ È°¿ëÀº È­ÇРü°èÀÇ Çൿµé¿¡ Àû¿ëµÇ´Â ±ÔÄ¢, ¿ø¸® ¶Ç´Â ¹ýÄ¢ÀÇ Á¸Àç¿Í ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾î À־, ¸í½ÃÀûÀ¸·Î ¶Ç´Â ¾Ï¹¬ÀûÀ¸·Î ¾î¶² º»ÁúÀû ¼ºÁúÀÇ ÃÖ¼ÒÈ­ ¶Ç´Â ÃÖ´ëÈ­¸¦ ÀǹÌÇÏ°Ô µÈ´Ù. ÀÌ ¹ýÄ¢À̳ª ¿ø¸®´Â º¯È­ÀÇ ÁøÇà¿¡ ÀÖ¾î ¼±È£ÇÏ´Â ¹æÇâÀÇ ÆÇ´ÜÀ» Á¦°øÇÏ´Â °æÇâÀÌ ÀÖ´Ù. ¸ñÀû·ÐÀû ¼³¸íÀº È­Çб³À°¿¡ ÀÖ¾î ¹ß°ßÀû ±³¼ö °¡Ä¡¸¦ °®°í ÀÖÁö¸¸, ÀÌ´Â ¶ÇÇÑ Çлýµé·Î ´ë¾ÈÀûÀÎ °³³äÀ» Çü¼ºÇÏ°í °úµµÇÑ ÀϹÝÈ­ °æÇâÀ» À̲ø±âµµ ÇÑ´Ù.
It has been commonly assumed that teleological explanations are unnecessary and have no place in the physical sciences. However, there are indications that teleology is fairly common in the instructional explanations of teachers and students in chemistry classrooms. In this study we explore the role and nature of teleological explanations and the conditions that seem to warrant their use in chemistry education. We also analyse the learning implications of developing explanations of chemical phenomena within a teleological stance. Our study is based on the qualitative analysis of the instructional explanations presented in traditional chemistry textbooks used in the United States. Our results indicate that teleological explanations are in fact present in these textbooks and help provide an explanatory reason for the occurrence of chemical transformations. Their use is tightly linked to the existence of a rule, principle, or law that governs the behaviour of a chemical system, and that explicitly or implicitly implies the minimisation or maximisation of some intrinsic property. This law or principle tends to provide a sense of preferred direction in the evolution of a transformation. Although teleological explanations seem to have heuristic pedagogical value in chemistry education, they may also lead students to develop alternative conceptions and unwarranted overgeneralisations.
----------------------------------------------------------------------

3. Developing Attitudes towards Science Measures
°úÇп¡ ´ëÇÑ Åµµ ôµµÀÇ °³¹ß

Kind, Per; Jones, Karen; Barmby, Partick

IJSE 2007 29(7) 871

ÀÌ ¿¬±¸´Â ÇлýµéÀÇ °úÇп¡ ´ëÇÑ Åµµ¸¦ Á¶»çÇϱâ À§ÇÑ Ã´µµ¸¦ °³¹ßÇÏ´Â °ÍÀ» ¼­¼úÇÑ °ÍÀÌ´Ù. ƯÈ÷ ´ÙÀ½°ú °°ÀÌ ¸î °³ÀÇ ºÐ¸®µÈ °úÇп¡ ´ëÇÑ Åµµ ôµµ¸¦ °³¹ßÇÏ¿´´Ù: Çб³¿¡¼­ °úÇÐ ÇнÀ, °úÇÐÀÇ ½ÇÁ¦Àû È°µ¿, Çб³¹Û °úÇÐ, °úÇÐÀÇ Á߿伺, °úÇп¡¼­ÀÇ Àھư³³ä, °úÇп¡ ´ëÇÑ ¹Ì·¡ Âü¿©. ÀÌ·¯ÇÑ Ã´µµµéÀ» °³¹ßÇÔ¿¡ ÀÖ¾î, °úÇб³À°¿¡¼­ÀÇ Åµµ¿¡ ´ëÇÑ ¼±Ç࿬±¸µé¿¡ ´ëÇÑ ºñÆòÀ» ¾ð±ÞÇÏ¿´´Ù. ƯÈ÷, °¢°¢ÀÇ Åµµ ±¸Àε鿡 ´ëÇÑ Á¤ÀǸ¦ ³»¸²¿¡ À־ °¢º°ÇÑ ÁÖÀǸ¦ ÇÏ¿´°í, °¢ ±¸ÀεéÀÌ ´ÜÀÎÂ÷¿øÀÓÀ» È®ÀÎÇÏ¿´´Ù. Ãʱâ ÆÄÀÏ·µ °úÁ¤¿¡ À̾, ¿µ±¹ Àü¿ªÀÇ 5°³ ÁßÇб³ 11-14¼¼ Çлýµé·Î ÇÏ¿©±Ý ŵµ ôµµ¸¦ Æ÷ÇÔÇÑ ¼³¹®Áö¸¦ Ç®°Ô ÇÏ¿´´Ù. ÀÌ ¼³¹®Áö´Â 4ÁÖ °£°ÝÀ¸·Î 2ȸ ¹Ýº¹ ½Ç½ÃÇÏ¿´´Ù. ÃÑ 932¸íÀÇ ÇлýµéÀÌ Ã¹ ¹ø ¼³¹®¿¡ ÀÀ´äÇÏ¿´°í, 668¸íÀÇ ÇлýµéÀÌ µÎ ¹ø° ¼³¹®¿¡ ÀÀ´äÇÏ¿´´Ù. °á°ú ÀÚ·á¿¡ ´ëÇؼ­ ¿äÀκм®À» ½Ç½ÃÇÏ¿© °¢ ŵµ ±¸ÀεéÀÇ ´ÜÀÏÂ÷¿ø¼ºÀ» È®ÀÎÇÏ¿´´Ù. ¶ÇÇÑ 3°³ÀÇ ±¸Àεé(Çб³¿¡¼­ °úÇÐÇнÀ, Çб³¹Û °úÇÐ, °úÇп¡ ´ëÇÑ ¹Ì·¡ Âü¿©)ÀÌ ÇϳªÀÇ ÀϹÝÀûÀΠŵµ ¿ä¼Ò·Î ¹­ÀÓÀ» È®ÀÎÇÏ¿´´Ù. ¸ðµç ŵµ ôµµ´Â ³ôÀº ³»Àû ½Å·Úµµ¸¦ º¸¿´´Ù(Å©·Ð¹ÙÇÏ °è¼ö 0.7 ÀÌ»ó). ÀÌ ¿¬±¸¿¡¼­ »ç¿ëÇÑ Á¢±ÙÀÇ ÇÑ°¡Áö °­Á¡Àº ´Ü°èÀûÀ¸·Î ŵµ ôµµ¸¦ ¸¸µé¾î°¨À¸·Î¼­ ´Ù¸¥ °ü·Ã ±¸Àε鿡 ´ëÇÑ ´ÙÀ½ °í·Á¸¦ °¡´ÉÇÏ°Ô ÇÏ¿´´Ù´Â Á¡ÀÌ´Ù.
In this study, we describe the development of measures used to examine pupils¡¯ attitudes towards science. In particular, separate measures for attitudes towards the following areas were developed: learning science in school, practical work in science, science outside of school, importance of science, self-concept in science, and future participation in science. In developing these measures, criticisms of previous attitude studies in science education were noted. In particular, care was taken over the definition of each of the attitude constructs, and also ensuring that each of the constructs was unidimensional. Following an initial piloting process, pupils aged 11–14 from five secondary schools throughout England completed questionnaires containing the attitude measures. These questionnaires were completed twice by pupils in these schools, with a gap of four weeks between the first and second measurements. Altogether, 932 pupils completed the first questionnaire and 668 pupils completed the second one. Factor analysis carried out on the resulting data confirmed the unidimensionality of the separate attitude constructs. Also, it was found that three of the constructs—learning science in school, science outside of school, and future participation in science—loaded on one general attitude towards science factor. Further analysis showed that all the measures showed high internal reliability (Cronbach¡¯s ¥á > 0.7). A particular strength of the approach used in this study was that it allowed for attitude measures to be built up step-by-step, therefore allowing for the future consideration of other relevant constructs.
--------------------------------------------------------------------

4. Slovakian Students¡¯ Knowledge of and Attitudes toward Biotechnology
½½·Î¹ÙÅ°¾Æ ÇлýµéÀÇ »ý¸í°øÇп¡ ´ëÇÑ Áö½Ä°ú ŵµ

Prokop, Pavol; Lešková, Andrea; Kubiatko, Milan; Diran, Carla

IJSE 29(7) 895

ÀÌ ¿¬±¸´Â À¯Àü°øÇÐÀ¸·Î »ý¼ºµÈ »ê¹°ÀÌ ¹ýÀ¸·Î ±ÝÁöµÈ º¸¼öÀûÀÎ ±¹°¡ÀÎ ½½·Î¹ÙÅ°¾Æ¿¡¼­ ´ëÇлýµé(n=378)ÀÇ »ý¸í°øÇп¡ ´ëÇÑ Áö½Ä°ú ŵµ¸¦ Á¶»çÇÑ °ÍÀÌ´Ù. ¿¬±¸ÀÚµéÀº ŵµ¿Í Áö½Ä ¼öÁØ °£ÀÇ ÀǹÌÀÖ´Â Á¤Àû »ó°üÀÌ ÀÖÀ½À» ¾Ë¾Æ³Â´Ù; ±×·¯³ª »ý¹°ÇÐ °úÁ¤ ÇлýµéÀÌ º¸´Ù ³ªÀº »ý¸í°øÇÐ Áö½ÄÀ» °®°í ÀÖÀ½¿¡ ºñÇØ ±×µéÀÇ À¯Àü °øÇп¡ ´ëÇÑ Åµµ´Â »ý¹°ÇÐÀ» °øºÎÇÏÁö ¾ÊÀº ´Ù¸¥ Çлýµé°ú À¯»çÇÑ Á¤µµ¿´´Ù. ¿©ÇлýµéÀÌ ³²Çлý¿¡ ºñÇؼ­ ³·Àº Áö½Ä ¼öÁØ°ú À¯Àü°øÇÐÀû »ý¼º¹°¿¡ ´ëÇÑ ³·Àº ¼ö¿ëµµ¸¦ º¸¿´´Ù. Àü¹ÝÀûÀ¸·Î ½½·Î¹ÙÅ°¾Æ ÇлýµéÀº À¯Àü°øÇÐÀÇ Àǹ̿¡ ´ëÇؼ­ ³·Àº Áö½Ä°ú ¸¹Àº ¿À°³³äÀ» °¡Áö°í ÀÖ¾úÀ¸¸ç, ÀÌ´Â ÀÌ ÁÖÁ¦¿Í °ü·ÃÇÑ °úÇб³À°°úÁ¤ÀÌ »ó´çºÎºÐ ÀçÆò°¡µÇ¾î¾ßÇÏ°í ±³¼ö ¹æ·«ÀÌ °³¼±µÇ¾î¾ß ÇÔÀ» ½Ã»çÇÑ´Ù.
This study examined university students¡¯ knowledge of and attitudes (n = 378) toward biotechnology in Slovakia, a conservative country where the distribution of genetically engineered products are banned by law. We found a significant positive correlation between attitudes and the level of knowledge; however, although students enrolled in biology courses have better knowledge of biotechnology, their attitudes toward genetic engineering were similar than those of students who do not study biology. Females showed poorer knowledge and lower acceptance of genetically engineered products than did males. Overall, Slovakian students have poor knowledge and numerous misunderstandings about what genetic engineering means, which suggests that science curriculum with respect to this topic should be greatly re-evaluated and teaching strategies should be improved accordingly.
--------------------------------------------------------------------

5. The Religio-scientific Frameworks of Pre-service Primary Teachers: An analysis of their influence on their teaching of science
¿¹ºñ Ãʵ»çµéÀÇ Á¾±³-°úÇÐÀû ü°è: °úÇÐ ±³¼ö¿¡ ¹ÌÄ¡´Â ¿µÇ⠺м®

Stolberg, Tonie

IJSE 29(7) 909

°úÇÐÀû ±×¸®°í Á¾±³Àû »ç°í¹æ½ÄÀº °³ÀÎÀÇ ÀÎÁöÀû ¹× ¹®È­Àû ¼¼°è°ü Çü¼º¿¡ ÇÙ½ÉÀûÀÌ´Ù. ÀÌ ³í¹®Àº ¿¡ºñÃʵ»ç°¡ °úÇÐÀ» °¡¸£Ä¥ ¶§ µ¿¿øÇÏ´Â ±Ù¿øÀûÀÎ °³³äÀÌ ¹«¾ùÀΰ¡¸¦ Ž»öÇÑ °ÍÀÌ´Ù. ÀÌ ¿¬±¸´Â 92¸íÀÇ ¿¹ºñ Ãʵ»çµéÀÇ °úÇаú Á¾±³¿¡ ´ëÇÑ Åµµ¸¦ Á¶»çÇÏ¿´´Ù. °³ÀÎÀÇ °úÇаú Á¾±³¸¦ ¿¬°ü½ÃÅ°´Â ¹æ½ÄÀ» ¼­¼úÇϱâ À§ÇØ »ç¿ëµÇ¾ú´ø ÀüÇüÀûÀÎ ¹üÁÖ´Â ÀÀ´äÀÚµéÀÇ Åµµ¸¦ ¹ÝÃßÇÔ¿¡ À־´Â ºÎÀûÀýÇÑ °ÍÀ¸·Î µå·¯³µ´Ù. ´ë¾ÈÀûÀÎ, Çö»óÇп¡ ±â¹ÝÇÑ Áø´Ü ü°è¸¦ Á¦¾ÈÇÏ¿© ÀÀ´äÀÚµéÀÇ °úÇÐ/Á¾±³¿¡ ´ëÇÑ Åµµ¸¦ ¡°ÀνķÐÀû¡± ¶Ç´Â ¡°½Ç¿ëÀûÀΡ± °ÍÀ¸·Î ÃøÁ¤ÇÏ´Â 2Â÷¿ø ôµµ¸¦ ±¸¼ºÇÏ¿´´Ù. 8¸íÀÇ ´ëÇ¥ÀûÀΠǥº»À» ´ë»óÀ¸·Î ÇÑ ¸é´ã ºÐ¼® °á°ú °³ÀÎÀÇ Á¾±³-°úÇÐÀû ü°è´Â °úÇÐ ±³¼öÀÇ Á¢±Ù¿¡¼­ ¸í¹éÇÑ Â÷ÀÌ¿Í ¿¬°üµÉ ¼ö ÀÖÀ½ÀÌ µå·¯³µ´Ù. ¿¹ºñ±³»çÀÇ Á¾±³-°úÇÐÀû ü°è¸¦ ¹àÈ÷´Â °ÍÀÌ Àå·¡ ±³À° ÇÁ·Î±×·¥ ¼³°è¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ³íÀÇÇÏ¿´´Ù.
Scientific and religious ways of thinking are central to an individual¡¯s cognitive and cultural ways of making sense of the world. This paper explores what foundational concepts pre-service primary teachers are employing when they teach science. The study measured the attitudes to science and religion of 92 pre-service primary teachers. The categories traditionally used to describe the ways individuals¡¯ relate science and religion were found to be inadequate when attempting to reflect the attitudes¡¯ of the respondents. An alternative, phenonomenologically based diagnostic framework was then proposed, constructed as a two-dimensional scale on which participant¡¯s attitude to science/religion was assessed as either ¡°epistemic¡± or ¡°pragmatic¡±. Analysis of interviews with a representative sample of eight of the teachers showed that individual religio-scientific frameworks could be linked to distinct differences in approach to the teaching of science. The impact of identifying the religio-scientific framework of pre-service teachers on the design of future educational programmes was then discussed.

÷ºÎ
ijse29(7).hwp

ÀÓ¼º¹Î
´ë±¸´ëÇб³

°úÇй®È­±³À°¿¬±¸¼Ò