"°úÇй®È­±³À°"

2007-09-25 (Vol 4, No 9)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

Journal of Research in Science Teaching , 44(7) September 2007)

Teacher and school characteristics and their influence on curriculum implementation (p 883-907)

±³»ç¿Í Çб³ÀÇ Æ¯¼ºÀÌ ±³À°°úÁ¤ ¼öÇà¿¡ ¹ÌÄ¡´Â ¿µÇâ

Gillian H. Roehrig, Rebecca A. Kruse, Anne Kern

Reform-based curriculum materials have been suggested as a mechanism to make inquiry-based instruction more prevalent in secondary science classrooms, specifically when accompanied by comprehensive professional development (Loucks-Horsley, Hewson, Love, & Stiles, [1998]; Powell & Anderson, [2002]). This research examines the implementation of a reform-based high school chemistry curriculum in a large, urban school district. We explicitly consider the role of the teachers' knowledge and beliefs in their implementation of the reform-based chemistry curriculum, as well as school level factors. Qualitative and quantitative data were collected in the form of beliefs interviews and classroom observations from 27 high school chemistry teachers. Analysis of the data revealed that implementation of the curriculum was strongly influenced by the teachers' beliefs about teaching and learning, and the presence of a supportive network at their school sites.

°³Çõ ±â¹Ý(Reform-based) ±³À°°úÁ¤ ÀÚ·áµéÀº Áßµî°úÇÐ ±³½Ç¿¡¼­ ´õ¿í µÎµå·¯Áø Ž±¸ Á᫐ ¼ö¾÷À» ¸¸µå´Â ±âÀç(mechanism)·Î Á¦¾ÈµÇ¾î ¿ÔÀ¸¸ç, ±×°ÍÀº ƯÈ÷ Æ÷°ýÀûÀÎ Àü¹®¼º °³¹ßÀÌ µ¿¹ÝµÉ ¶§ ±×·¸´Ù. ÀÌ ¿¬±¸´Â µµ½Ã¿¡ ÀÖ´Â ±Ô¸ð°¡ Å« ±³À°±¸¿¡¼­ °³Çõ ±â¹Ý °íµîÇб³ È­ÇÐ ±³À°°úÁ¤ÀÇ ¼öÇàÀ» Á¶»çÇÏ´Â °ÍÀÌ´Ù. ¿ì¸®´Â °³Çõ ±â¹Ý È­ÇÐ ±³À°°úÁ¤ÀÇ ¼öÇà¿¡¼­ Çб³¼öÁØÀÇ ¿ä¼Òµé»Ó¸¸ ¾Æ´Ï¶ó ±³»çÀÇ Áö½Ä°ú ½Å³äÀÇ ¿ªÇÒÀ» ¸í¹éÇÏ°Ô °íÂûÇÏ¿´´Ù. 27¸íÀÇ °íµîÇб³ È­ÇÐ ±³»çµé·ÎºÎÅÍ ½Å³ä¿¡ ´ëÇÑ ¸é´ã°ú ±³½Ç °üÂûÀÇ ¹æ¹ýÀ» ÅëÇØ Á¤·®ÀûÀÌ°í Á¤¼ºÀûÀÎ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿´´Ù. µ¥ÀÌÅÍÀÇ ºÐ¼® °á°ú ±³À°°úÁ¤ÀÇ ¼öÇàÀÌ ±³¼ö¡¤ÇнÀ¿¡ ´ëÇÑ ±³»çÀÇ ½Å³ä°ú Çб³ »çÀÌÆ®¿¡¼­ Áö¿ø ³×Æ®¿öÅ©ÀÇ Á¸Àç¿¡ °­ÇÏ°Ô ¿µÇâÀ» ¹Þ´Â´Ù´Â °ÍÀÌ ³ªÅ¸³µ´Ù.
-------------------------------------------------------------------
Student affect and conceptual understanding in learning chemistry (p 908-937)

È­ÇÐ ÇнÀ¿¡¼­ ÇлýÀÇ Á¤¼­¿Í °³³ä ÀÌÇØ

Martina Nieswandt

This study explores the relationship between affective and cognitive variables in grade 9 chemistry students (n = 73). In particular, it explores how students' situational interest, their attitudes toward chemistry, and their chemistry-specific self-concept influence their understanding of chemistry concepts over the course of a school year. All affective variables were assessed at two time points: at the middle of the first semester of grade 9, and at the end of the second semester of grade 9, and then related to students' postinstructional understanding of chemical concepts. Results reveal that none of the affective variables measured at the earliest time point have a significant direct effect on postinstructional conceptual understanding. Looking at the different affective variables as intermediary constructs, however, reveals a pattern in which self-concept and situational interest measured at the middle of grade 9 contribute to self-concept measured at the end of grade 9, which in turn, has a positive, significant effect on students' postinstructional conceptual understanding. These results reveal the importance of a strong and positive self-concept, the feeling of doing well in the chemistry class, for developing a meaningful understanding of scientific concepts.

ÀÌ ¿¬±¸´Â È­ÇÐÀ» ¼ö°­ÇÏ´Â 9Çгâ Çлý 73¸íÀ» ´ë»óÀ¸·Î Á¤¼­ÀûÀÎ º¯¼ö¿Í ÀÎÁöÀûÀÎ º¯¼ö »çÀÌÀÇ °ü·ÃÀ» Ž»öÇÏ´Â °ÍÀÌ´Ù. ƯÈ÷, ÇлýµéÀÇ »óȲÀû °ü½É, È­Çп¡ ´ëÇÑ Åµµ, È­ÇÐ-Ư¼ºÀû Àھư³³äÀÌ Çб³°úÁ¤À» ÅëÇؼ­ È­ÇÐ °³³äÀ» ÀÌÇØÇϴµ¥ ¾î¶»°Ô ¿µÇâÀ» ¹ÌÄ¡´ÂÁö Ž»öÇÏ¿´´Ù. ¸ðµç Á¤¼­ÀûÀÎ º¯ÀεéÀº µÎ ½Ã±â(9Çгâ 1Çбâ Áß°£°ú 9Çгâ 2Çб⠸»)¿¡ Æò°¡µÇ¾ú°í ÇлýµéÀÇ ¼ö¾÷ ÈÄ(post-instructional) È­ÇÐ °³³ä ÀÌÇØ¿Í °ü·Ã Áö¿öÁ³´Ù. °á°ú´Â ù ¹ø° Æò°¡ ½Ã±â¿¡ ÃøÁ¤µÈ Á¤¼­ÀûÀÎ º¯ÀÎ Áß ¾î¶°ÇÑ °Íµµ ¼ö¾÷ ÈÄ °³³ä ÀÌÇØ¿¡ ÀÇ¹Ì ÀÖ´Â Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡Áö ¾Ê¾Ò´Ù. ±×·¯³ª ´Ù¸¥ Á¤¼­ÀûÀÎ º¯ÀεéÀ» Áß°£ ±¸Á¶¹°·Î º¸¸é, 9Çгâ Áß°£¿¡ ÃøÁ¤µÈ Àھư³³ä°ú »óȲÀû °ü½ÉÀÌ 9Çг⠸»¿¡ ÃøÁ¤µÈ Àھư³³ä¿¡ ±â¿©ÇÏ°í ÀÖ´Â ÆÐÅÏÀÌ ³ªÅ¸³ª°í ÀÖ°í, ÀÌ°ÍÀº ¼ö¾÷ ÈÄ ÇлýµéÀÇ °³³ä ÀÌÇØ¿¡ ±àÁ¤ÀûÀÌ°í ÀÇ¹Ì ÀÖ´Â È¿°ú¸¦ º¸Àδٴ °ÍÀ» ¸»ÇÑ´Ù. ÀÌ·¯ÇÑ °á°úµéÀº °úÇÐÀû °³³äÀÇ ÀÇ¹Ì ÀÖ´Â ÀÌÇظ¦ ½ÅÀå½ÃÅ°±â À§Çؼ­ °­ÇÏ°í ±àÁ¤ÀûÀÎ ÀÚ¾Æ °³³ä, È­ÇÐ ¼ö¾÷¿¡¼­ Àß ÇÏ°í ÀÖ´Ù´Â °¨Á¤ÀÌ Áß¿äÇÏ´Ù´Â °ÍÀ» ³ªÅ¸³½´Ù°í ÇÒ ¼ö ÀÖ´Ù.
-----------------------------------------------------------------------
Reasoning across ontologically distinct levels: Students' understandings of molecular genetics (p 938-959)

Á¸Àç·ÐÀûÀ¸·Î ±¸º°µÈ ¼öÁصéÀ» °¡·ÎÁö¸£´Â »ç°í: ºÐÀÚ À¯ÀüÇп¡ ´ëÇÑ ÇлýÀÇ ÀÌÇØ

Ravit Golan Duncan, Brian J. Reiser

In this article we apply a novel analytical framework to explore students' difficulties in understanding molecular genetics - a domain that is particularly challenging to learn. Our analytical framework posits that reasoning in molecular genetics entails mapping across ontologically distinct levels - an information level containing the genetic information, and a physical level containing hierarchically organized biophysical entities such as proteins, cells, tissues, etc. This mapping requires an understanding of what the genetic information specifies, and how the physical entities in the system mediate the effects of this information. We therefore examined, through interview and written assessments, 10th grade students' understandings of molecular genetics phenomena to uncover the conceptual obstacles involved in reasoning across these ontologically distinct levels. We found that students' described the genetic instructions as containing information about both the structure and function of biological entities across multiple organization levels; a view that is far less constrained than the scientific understandings of the genetic information. In addition, students were often unaware of the different functions of proteins, their relationship to genes, and the role proteins have in mediating the effects of the genetic information. Students' ideas about genes and proteins hindered their ability to reason across the ontologically distinct levels of genetic phenomena, and to provide causal mechanistic explanations of how the genetic information brings about effects of a physical nature.

ÀÌ ¿¬±¸¿¡¼­ ¿ì¸®´Â »õ·Î¿î ºÐ¼®Æ²À» ÇлýµéÀÇ ºÐÀÚ À¯ÀüÇÐ(ÇнÀ¿¡ À־ ƯÈ÷ µµÀüÀûÀÎ ¿µ¿ª) ÀÌÇØ¿¡ ÀÖ¾î ¾î·Á¿òÀ» Ž»öÇϴµ¥ Àû¿ëÇÏ¿´´Ù. ¿ì¸®ÀÇ ºÐ¼®Æ²Àº ºÐÀÚ À¯ÀüÇп¡¼­ »ç°í°¡ Á¸Àç·ÐÀûÀ¸·Î ±¸º°µÇ´Â ¼öÁصé(Á¤º¸ ¼öÁØÀº À¯ÀüÀû Á¤º¸¸¦ Æ÷ÇÔÇÏ°í, ¹°Áú ¼öÁØÀº °èÃþÀûÀ¸·Î Á¶Á÷µÈ »ý¹°¹°¸®ÇÐÀû Á¸Àç-´Ü¹éÁú, ¼¼Æ÷, Á¶Á÷, µîµî-¸¦ Æ÷ÇÔ)À» °¡·ÎÁö¸£´Â ¿¬°á(mapping)À» ³²±ä´Ù´Â °ÍÀ» °¡Á¤ÇÑ´Ù. ÀÌ ¿¬°áÀº À¯ÀüÀû Á¤º¸°¡ »ó¼¼È÷ ±â¼úÇÏ´Â °ÍÀÇ ÀÌÇØ, °è¿¡¼­ ¹°ÁúÀû Á¸Àç°¡ Á¤º¸ÀÇ °á°ú¸¦ ¾î¶»°Ô Àü´ÞÇÏ´ÂÁöÀÇ ÀÌÇظ¦ ¿ä±¸ÇÑ´Ù. µû¶ó¼­ ¿ì¸®´Â Á¸Àç·ÐÀûÀ¸·Î ±¸º°µÇ´Â ¼öÁصéÀ» °¡·ÎÁö¸£´Â »ç°í¿¡¼­ ³ªÅ¸³ª´Â °³³äÀû Àå¾Ö¸¦ ¹àÈ÷±â À§ÇØ ¸é´ã°ú ¼­¼ú Æò°¡¸¦ ÅëÇؼ­ 10Çгâ ÇлýµéÀÇ ºÐÀÚ À¯ÀüÇÐÀû Çö»ó¿¡ ´ëÇÑ ÀÌÇظ¦ Á¶»çÇÏ¿´´Ù. ¿ì¸®´Â ÇлýµéÀÌ À¯ÀüÇÐ ¼ö¾÷À» º¹ÇÕ Á¶Á÷ ¼öÁصéÀ» °¡·ÎÁö¸£´Â »ý¹°ÇÐÀû Á¸ÀçµéÀÇ ±¸Á¶¿Í ±â´É ¸ðµÎ¿¡ ´ëÇÑ Á¤º¸¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â °ÍÀ¸·Î ±â¼úÇÏ´Â °ÍÀ» ¹ß°ßÇߴµ¥, ÀÌ °üÁ¡Àº À¯ÀüÇÐ Á¤º¸¿¡ ´ëÇÑ °úÇÐÀû ÀÌÇغ¸´Ù ÈξÀ ´ú ±¸¼ÓµÈ °ÍÀÌ´Ù. ±×¸®°í ÇлýµéÀº ´Ü¹éÁúÀÇ ´Ù¸¥ ±â´É, ´Ü¹éÁú°ú À¯ÀüÀÚÀÇ °ü·Ã¼º, À¯ÀüÁ¤º¸ÀÇ °á°ú¸¦ Àü´ÞÇÏ´Â ´Ü¹éÁúÀÇ ¿ªÇÒÀ» Àß ¾ËÁö ¸øÇß´Ù. À¯ÀüÀÚ¿Í ´Ü¹éÁú¿¡ ´ëÇÑ ÇлýµéÀÇ »ý°¢Àº À¯Àü Çö»óÀÇ Á¸Àç·ÐÀûÀ¸·Î ±¸º°µÇ´Â ¼öÁصéÀ» °¡·ÎÁö¸£´Â »ç°í ´É·ÂÀ» ¹æÇØÇÏ°í, À¯Àü Á¤º¸°¡ ¹°Áú°è¿¡ ¾î¶»°Ô È¿°ú¸¦ ÀÏÀ¸Å°´ÂÁö¿¡ ´ëÇÑ ÀΰúÀû ÀÛ¿ë¿¡ ´ëÇÑ ¼³¸í ´É·ÂÀ» ¹æÇØÇß´Ù.
---------------------------------------------------------------------
Effects of active-learning experiences on achievement, attitudes, and behaviors in high school biology (p 960-979)

°íµîÇб³ »ý¹°Çп¡¼­ ´Éµ¿ÀûÀÎ ÇнÀ °æÇèÀÌ ¼ºÃëµµ, ŵµ, Çൿ¿¡ ¹ÌÄ¡´Â È¿°ú

Roman Taraban, Cathy Box, Russell Myers, Robin Pollard, Craig W. Bowen

Active-learning labs for two topics in high school biology were developed through the collaboration of high school teachers and university faculty and staff and were administered to 408 high school students in six classrooms. The content of instruction and testing was guided by State of Texas science objectives. Detailed teacher records describing daily classroom activities were used to operationalize two types of instruction: active learning, which used the labs; and traditional, which used the teaching resources ordinarily available to the teacher. Teacher records indicated that they used less independent work and fewer worksheets, and more collaborative and lab-based activities, with active-learning labs compared to traditional instruction. In-class test data show that students gained significantly more content knowledge and knowledge of process skills using the labs compared to traditional instruction. Questionnaire data revealed that students perceived greater learning gains after completing the labs compared to covering the same content through traditional methods. An independent questionnaire administered to a larger sample of teachers who used the lab-based curriculum indicated that they perceived changing their behaviors as intended by the student-centered principles of the labs. The major implication of this study is that active-learning-based laboratory units designed and developed collaboratively by high school teachers and university faculty, and then used by high school teachers in their classrooms, can lead to increased use of student-centered instructional practices as well as enhanced content knowledge and process learning for students.

°íµîÇб³ »ý¹°Çп¡¼­ µÎ °¡Áö ÁÖÁ¦¿¡ ´ëÇÑ ´Éµ¿Àû-ÇнÀ ½ÇÇèÀÌ °íµîÇб³ ±³»çµé, ´ëÇÐ ±³¼ö¿Í ½ºÅÂÇÁÀÇ Çù·ÂÀ¸·Î °³¹ßµÇ¾ú°í 6ÇÐ±Þ 408¸íÀÇ °íµîÇб³ Çлýµé¿¡°Ô ½Ç½ÃµÇ¾ú´Ù. ¼ö¾÷ÀÇ ³»¿ë°ú Å×½ºÆ®´Â Åػ罺 ÁÖÀÇ °úÇÐ ¸ñÇ¥¸¦ Áß½ÉÀ¸·Î ±¸¼ºµÇ¾ú´Ù. ¸ÅÀÏÀÇ ±³½Ç È°µ¿µéÀ» ¹¦»çÇÏ´Â »ó¼¼ÇÑ ±³»ç ±â·Ï¹°Àº ¼ö¾÷ÀÇ µÎ °¡Áö À¯Çü(½ÇÇèÀ» »ç¿ëÇÑ ´Éµ¿ÀûÀÎ ÇнÀ; Åë»óÀûÀ¸·Î ±³»ç¿¡°Ô À¯¿ëÇÑ ±³¼ö ÀڷḦ »ç¿ëÇÑ ÀüÅëÀûÀÎ ÇнÀ)À¸·Î Á¶Á÷È­Çϴµ¥ »ç¿ëµÇ¾ú´Ù. ´Éµ¿Àû ÇнÀ ½ÇÇè¹Ý¿¡ ´ëÇÑ ±³»ç ±â·Ï¹°Àº ±×µéÀÌ ÀüÅëÀû ¼ö¾÷ Áý´Ü¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ³·Àº µ¶¸³¼ºÀ» °¡Áö°í ÀÏÀ» ÇßÀ¸¸ç ÀûÀº ¼öÀÇ È°µ¿Áö¸¦ »ç¿ëÇßÀ¸¸ç, ´õ Çù·ÂÀûÀÌ°í ½ÇÇè¿¡ ±âÃÊÇÑ È°µ¿µéÀ» ÇßÀ½À» º¸¿©ÁÖ¾ú´Ù. ¼ö¾÷ Áß °Ë»ç µ¥ÀÌÅÍ´Â ÇлýµéÀÌ ÀüÅëÀûÀÎ ¼ö¾÷°ú ºñ±³ÇØ º¼ ¶§ ½ÇÇèÀ» ÀÌ¿ëÇÏ¿© ³»¿ë Áö½Ä°ú °úÁ¤ ±â¼úÀÇ Áö½ÄÀ» ´õ ÀÇ¹Ì ÀÖ°Ô ¾ò¾ú´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. Áú¹®Áö¹ý µ¥ÀÌÅÍ´Â ÇлýµéÀÌ µ¿ÀÏÇÑ ³»¿ë¿¡ ´ëÇؼ­ ÀüÅëÀû ¹æ¹ý°ú ºñ±³ÇÏ¿© ½ÇÇèÀ» ¼öÇàÇÑ ÀÌÈÄ¿¡ ´õ ¸¹Àº ÇнÀ °á°ú¹°À» ÀÌÇØÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. µ¶¸³ Áú¹®Áö¹ýÀ» ´õ ±Ô¸ð°¡ Å« ±³»ç(½ÇÇè¿¡¼­ ÀǵµÇÑ ÇлýÁ᫐ ¿ø¸®´ë·Î ÀÚ½ÅÀÇ Çൿ º¯È­¸¦ ÀÎÁöÇÏ°í ¾ð±ÞµÈ ½ÇÇè¿¡ ±âÃÊÇÑ ±³À°°úÁ¤À» »ç¿ëÇÑ) Áý´Ü¿¡ ½Ç½ÃÇÏ¿´´Ù. ÀÌ ¿¬±¸¿¡¼­ ¾ò¾îÁø ÁÖµÈ ½Ã»çÁ¡Àº °íµîÇб³ ±³»çµé°ú ´ëÇÐ ±³¼öµéÀÌ Çù·ÂÀûÀ¸·Î ¼³°èÇÏ°í °³¹ßÇÑ ´Éµ¿Àû-ÇнÀ¿¡ ±âÃÊÇÑ ½ÇÇè ´Ü¿øµéÀÌ ÇлýµéÀÇ ³»¿ë Áö½Ä°ú °úÁ¤ ÇнÀÀÇ Áõ°¡¸¦ °¡Á®¿ÔÀ» »Ó¸¸ ¾Æ´Ï¶ó ÇлýÁ᫐ ±³¼ö¹ý ½ÇÇàÀÇ Áõ°¡·Î ³ªÅ¸³¯ ¼ö ÀÖ´Ù´Â °ÍÀÌ´Ù.
-----------------------------------------------------------------------
Gender ratios in high school science departments: The effect of percent female faculty on multiple dimensions of students' science identities (p 980-1009)

°íµîÇб³ °úÇкο¡¼­ÀÇ ¼º ºñÀ² : ¿©±³»çµéÀÇ ºñÀ²ÀÌ ÇлýµéÀÇ ´ÙÂ÷¿øÀû °úÇÐ Á¤Ã¼¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ

Shannon Gilmartin, Nida Denson, Erika Li, Alyssa Bryant, Pamela Aschbacher

To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative analyses tested the hypothesis that percent female faculty would have a positive effect on girls' science interests, and perceptions in particular, given the potentially greater availability of women role models. Findings indicate that percent female science faculty does not have an effect on a range of science measures for both male and female students, including the ways in which they understand scientific practice, their science self-concept, and their interest in science-related college majors. As qualitative data demonstrate, this could reflect practical constraints at schools where female faculty are concentrated and narrow perceptions of science teachers and real science.

Çб³ Ư¼ºµéÀÌ °úÇаú °øÇÐ °üÁ¡¿¡ ¾î¶»°Ô ¿¬°áµÇ´ÂÁö ±×¸®°í °úÇаú °øÇÐ ¿µ¿ª¿¡¼­ Àß µå·¯³ªÁö ¾Ê´Â ÇлýµéÀÇ ¿­¸Á°ú ¾î¶»°Ô °ü·ÃµÇ´ÂÁö¸¦ Á¶»çÇϱâ À§ÇØ, ÀÌ ¿¬±¸¿¡¼­´Â È¥ÇÕ ¿¬±¸¹æ¹ýÀ» »ç¿ëÇÏ¿© ÇлýµéÀÇ °úÇÐ Á¤Ã¼¼º¿¡ ´ëÇÑ Ãø¸é°ú °íµîÇб³ °úÇÐ ±³»ç Áß ¿©±³»çµéÀÇ Ç¥Çö »çÀÌÀÇ °ü·Ã¼ºÀ» Ž»öÇÏ¿´´Ù. Á¤·®Àû ºÐ¼®À» ÅëÇØ ¿©±³»çµéÀÇ ºñÀ²ÀÌ ¿©ÇлýµéÀÇ °úÇÐ Èï¹Ì¿Í ÀνĿ¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ̶ó´Â °¡¼³À» °ËÁõÇÏ¿´´Ù. ¹ß°ß »ç½ÇÀº ¿©¼º °úÇÐ ±³»çµéÀÇ ºñÀ²ÀÌ ³²Çлý°ú ¿©ÇлýÀÇ °úÇÐÀû ½ÇÇàÀ» ÀÌÇØÇÏ´Â ¹æ¹ý, °úÇп¡ ´ëÇÑ ÀÚ¾Æ °³³ä, °úÇаú °ü·ÃµÈ ´ëÇÐ Àü°ø¿¡ ´ëÇÑ °ü½ÉÀ» Æ÷ÇÔÇÑ °úÇÐ Æò°¡ ¿µ¿ª¿¡ ¿µÇâÀ» ¹ÌÄ¡Áö ¾Ê¾Ò´Ù´Â °ÍÀÌ´Ù. Á¤¼ºÀûÀÎ µ¥ÀÌÅÍ¿¡ µû¸£¸é ÀÌ°ÍÀº ¿©±³»çµéÀÌ ÁýÁßµÈ Çб³¿¡¼­ ½ÇÁ¦ÀûÀÎ ±¸¼ÓÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ°í °úÇб³»çµé°ú ½ÇÁ¦ °úÇп¡ ´ëÇÑ Æø Á¼Àº ÀνÄÀ» ÃÊ·¡ÇÒ ¼ö ÀÖÀ½À» º¸¿©ÁØ´Ù.

÷ºÎ
JRST¿ä¾à44±Ç7È£(September 2007).hwp

¹ø¿ª: ±è¿ø¼÷. ±è¿µ¹Î
ºÎ»ê´ëÇб³ ¹°¸®±³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò