"°úÇй®È­±³À°"

2007-10-25 (Vol 4, No 10)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

Journal of Research in Science Teaching, 44(8), Oct 2007

A mixed methods analysis of the effects of an integrative geobiological study of petrified wood in introductory college geology classrooms (p 1011-1035)
´ëÇÐ ÁöÁúÇÐ ±âÃÊ°úÁ¤¿¡¼­ ¡®µ¹ÀÌ µÈ ³ª¹«¡¯¿¡ ´ëÇÑ ÅëÇÕ °úÇÐÀûÀÎ ÁöÁú-»ý¹°ÇÐÀû ÇнÀ È¿°ú¿¡ ´ëÇÑ ºÐ¼®

Renee M. Clary, James H. Wandersee

Abstract
Mixed methods research conducted across three semesters in introductory college geology classes (n = 187, 190, 138) attempted to ascertain whether integrated study of petrified wood could serve as a portal to improved student geobiological understanding of fossilization, geologic time, and evolution. The Petrified Wood SurveyTM was administered as a preinstructional and postinstructional assessment in control and experimental classes; the experimental class received integrated petrified wood instruction. Paired t tests of differences in students' pre- and postinstructional scores for control and experimental groups revealed significance ( = 0.05, effect size = 0.79, confidence interval 0.56-1.01). The students with integrative study showed greater knowledge gains about petrified wood's abundance, properties, nature, location, and geologic time. However, understanding of fossilization geochemistry remained problematic for both groups.

¡®µ¹ÀÌ µÈ ³ª¹«¡¯¿¡ ´ëÇÑ ÅëÇÕ °úÇÐÀû ÇнÀÀÌ È­¼®È­ ÀÛ¿ë, ÁöÁú½Ã´ë, ÁøÈ­¿¡ ´ëÇÑ ÇлýµéÀÇ ÁöÁú»ý¹°ÇÐÀû ÀÌÇظ¦ °³¼±Çϴµ¥ µµ¿òÀÌ µÇ´ÂÁö¸¦ ¾Ë¾Æº¸±â À§Çؼ­, ´ëÇÐ ±âÃÊ°úÁ¤¿¡ ÀÖ´Â ÁöÁúÇаú Çлýµé (n=187, 190,138)¿¡°Ô 3Çб⠵¿¾È ¿¬±¸°¡ ¼öÇàµÇ¾ú´Ù. ¡®µ¹ÀÌ µÈ ³ª¹«¡¯ °ü·Ã ÇнÀ È¿°ú Á¶»ç µµ±¸°¡ »çÀü¼ö¾÷°ú »çÈļö¾÷ Æò°¡·Î¼­ ÅëÁ¦Áý´Ü°ú ½ÇÇèÁý´Ü¿¡ ÁÖ¾îÁ³°í ½ÇÇèÁý´ÜÀº ¡®µ¹ÀÌ µÈ ³ª¹«¡¯¿¡ ´ëÇØ ÅëÇÕ °úÇÐÀû ¼ö¾÷À» ¹Þ¾Ò´Ù. ÅëÁ¦Áý´Ü°ú ½ÇÇèÁý´Ü¿¡ ´ëÇؼ­ »çÀü-»çÈÄ ¼ö¾÷ Á¡¼ö¿¡¼­ÀÇ Â÷À̸¦ º¸±â À§Çؼ­ ´ëÀÀÇ¥º» t °ËÁ¤À» ÇÑ °á°ú À¯ÀǹÌÇÏ°Ô ³ªÅ¸³µ´Ù. ( = 0.05, effect size = 0.79, confidence interval 0.56-1.01) ÅëÇÕ °úÇÐÀû ÇнÀ¿¡ Âü¿©ÇÑ ÇлýµéÀº È­¼®È­µÈ ³ª¹«ÀÇ Ç³ºÎÇÔ, Ư¼º, ¼Ó¼º, ºÐÆ÷, ÁöÁú½Ã´ë¿¡ ´ëÇؼ­ ´õ ¸¹Àº Áö½ÄÀ» ¾ò¾úÀ½À» º¸¿´´Ù. ±×·¯³ª µÎ ±×·ì ¸ðµÎ¿¡¼­ È­¼®È­ ÀÛ¿ë¿¡ ´ëÇÑ ÁöÁú-È­ÇÐÀû ÀÌÇØ´Â ºÒÈ®½ÇÇÑ °ÍÀ¸·Î ³²¾ÆÀÖ¾ú´Ù.
---------------------------------------------------------------------
The relationship of freshmen's physics achievement and their related affective characteristics (p 1036-1056)
´ëÇÐ ½ÅÀÔ»ýÀÇ ¹°¸® ¼ºÃëµµ¿Í ±×µéÀÇ Á¤ÀÇÀûÀΠƯ¼º°úÀÇ °ü·Ã¼º

Almer (Abak) Gungor, Ali Erylmaz, Turgut Fakoglu

Abstract
The purpose of this study was to determine the best-fitting structural equation model between the freshmen's physics achievement and selected affective characteristics related to physics. These characteristics are students' situational interest in physics, personal interest in physics, aspiring extra activities related to physics, importance of physics, importance of electricity, physics course anxiety, physics test anxiety, physics achievement motivation, student motivation in physics, self-efficacy in physics, self-concept in physics, and locus of control. The researchers developed the affective characteristics questionnaire that consisted of 12 subdimensions, and has 53 items related to these subdimensions. The questionnaire was applied to 890 freshmen physics students at the universities in Ankara. Two models were tested: a unidimensional model and a multidimensional model. However, a third model, which is more similar to the multidimensional model, exhibited the best fit for the freshmen. Moreover, the results revealed that achievement motivation was the most influential affective characteristic on physics achievement. On the other hand, motivation in physics had a negative influence on physics achievement in the model, and the influence of the students' attitudes towards physics was not statistically significant. Thus, one should especially pay attention to the students' achievement motivation in physics if the aim is to increase students' physics achievement.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ´ëÇÐ ½ÅÀÔ»ýÀÇ ¹°¸® ¼ºÃëµµ¿Í ¼±ÅÃµÈ Á¤ÀÇÀûÀΠƯ¼ºµé »çÀÌÀÇ °¡Àå ÀûÀýÇÑ ±¸Á¶ ¹æÁ¤½Ä ¸ðµ¨À» °áÁ¤Çϱâ À§ÇÑ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ Æ¯¼ºµéÀº ÇлýµéÀÇ ¹°¸®ÀÇ »óȲÀû Èï¹Ì, ¹°¸®¿¡ ´ëÇÑ °³ÀÎÀûÀÎ Èï¹Ì, ¹°¸®¿Í °ü·ÃµÈ Ưº° È°µ¿µé¿¡ ´ëÇÑ Èï¹Ì, ¹°¸®ÀÇ Á߿伺, Àü±âÇÐÀÇ Á߿伺, ¹°¸® °ú¸ñ¿¡ ´ëÇÑ ºÒ¾È°¨, ¹°¸® Æò°¡¿¡ ´ëÇÑ ºÒ¾È°¨, ¹°¸®ÇÐ ¼ºÃ뵿±â, ¹°¸® ÇнÀ µ¿±â, ¹°¸®¿¡¼­ÀÇ ÀÚ¾Æ È¿´É°¨, ¹°¸®¿¡¼­ÀÇ ÀÚ¾Æ °³³ä, ÅëÁ¦ÀÇ À§Ä¡ µîÀÌ´Ù. ¿¬±¸ÀÚ´Â 12°³ÀÇ ÇÏÀ§¿µ¿ª°ú 53 ¹®Ç×À¸·Î ±¸¼ºµÈ Á¤ÀÇÀû Ư¼ºµé¿¡ ´ëÇÑ Áú¹®Áö¸¦ °³¹ßÇß´Ù. ÀÌ Áú¹®Áö¸¦ Ankara¿¡ ÀÖ´Â ´ëÇÐ 890¸íÀÇ ¹°¸®Çаú ½ÅÀÔ»ý¿¡°Ô Àû¿ëÇÏ¿´´Ù. µÎ ¸ðµ¨(´ÜÀÏÂ÷¿ø ¸ðµ¨°ú ´ÙÂ÷¿ø ¸ðµ¨)ÀÌ Å×½ºÆ®µÇ¾ú´Ù. ±×·¯³ª ´ÙÂ÷¿ø ¸ðµ¨¿¡ °¡±î¿î ¼¼ ¹ø° ¸ðµ¨ÀÌ ½ÅÀÔ»ý¿¡°Ô °¡Àå ÀûÇÕÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ´õ¿íÀÌ ¹°¸®ÇÐ ¼ºÃ뵿±â°¡ ¹°¸® ¼ºÃëµµ¿¡ °¡Àå ¿µÇâ·Â ÀÖ´Â Á¤ÀÇÀû Ư¼ºÀ̶ó´Â °á°ú°¡ ³ª¿Ô´Ù. ÀÌ¿¡ ¹ÝÇؼ­, ¹°¸® ÇнÀ µ¿±â´Â ¹°¸® ¼ºÃëµµ¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ°í ¹°¸®¿¡ ´ëÇÑ ÅµµÀÇ ¿µÇâÀº Åë°èÀûÀ¸·Î À¯ÀǹÌÇÏÁö ¾Ê¾Ò´Ù. µû¶ó¼­, ÇлýµéÀÇ ¹°¸® ¼ºÃëµµ Áõ°¡°¡ ¸ñÀûÀ̶ó¸é ÇлýµéÀÇ ¹°¸®ÇÐ ¼ºÃ뵿±â¿¡ Ưº°È÷ °ü½ÉÀ» ±â¿ï¿©¾ß ÇÑ´Ù.
----------------------------------------------------------------------
The development and application of affective assessment in an upper-level cell biology course (p 1057-1087)
»óÀ§ ¼öÁØÀÇ ¼¼Æ÷ »ý¹°ÇÐ °úÁ¤¿¡¼­ Á¤ÀÇÀû Æò°¡ÀÇ °³¹ß°ú Àû¿ë

Elizabeth Kitchen, Suzanne Reeve, John D. Bell, Richard R. Sudweeks, William S. Bradshaw

Abstract
This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student self-efficacy (confidence) in completing tasks common to practicing experts, and (c) interests in subject-specific topics and associated intellectual skills. The iterative processes used in refining the instruments and performing the statistical analyses of their effectiveness are detailed. An analysis of data obtained using these instruments is also included. Positive attitudes towards courses emphasizing analytical thinking increased significantly over the course of a 14-week semester, as did the measures of self-efficacy. Despite the rigorous analytical nature of the course experience, the initial strong interest in cell biology topics and higher order thinking skills remained unchanged. There were no significant differences based on gender in any of the affective measures. We discuss the apparent dichotomy, revealed in these assessments, between students' idealistic, academic attitudes towards the course's effectiveness and their opinions of its effects on them personally. We conclude by reporting how insights garnered both from these formal assessments and from anecdotal communications have prompted experimental modifications in the design and conduct of the course.

ÀÌ ¿¬±¸´Â ±³»çµéÀÌ °¡¸£Ä¡´Â °ú¸ñÀÇ ¼¼ºÎÀûÀΠƯ¡¿¡ ´ëÇÑ ÇлýµéÀÇ Á¤ÀÇÀû ¹ÝÀÀÀ» Æò°¡Çϱâ À§Çؼ­ ±×µéÀÌ µµ±¸¸¦ ¾î¶»°Ô °³¹ßÇÒ ¼ö ÀÖ´ÂÁö¸¦ ¿¹½ÃÀûÀ¸·Î º¸¿©ÁØ´Ù. ÇлýµéÀÇ Á¤ÀÇÀû ¹ÝÀÀÀ» Æò°¡Çϱâ À§ÇÑ ¼¼ °¡Áö ÇüÅÂÀÇ ¹æ¹ýÀÌ Á¦½ÃµÇ¾ú´Ù: (a) ¼­·Î ´Ù¸¥ ¼ö¾÷ ¸ñÇ¥¿Í ¹æ¹ýÀ» °¡Áø °ú¸ñµé¿¡ ´ëÇÑ ÇлýµéÀÇ Åµµ, (b) °øÅë °úÁ¦¸¦ ¼öÇàÇϴµ¥ À־ ÇлýµéÀÇ ÀÚ¾Æ-È¿´É°¨, (c) °ú¸ñ-ƯÁ¤Àû ÁÖÁ¦¿¡ ´ëÇÑ Èï¹Ì ¹× ±×¿Í ¿¬°üµÈ ÁöÀû ±â´Éµé.
µµ±¸¸¦ Á¤±³È­Çϱâ À§ÇØ Áö·çÇÑ ¹Ýº¹ °úÁ¤µéÀÌ »ç¿ëµÇ¾ú°í ±×µéÀÇ È¿°ú¼º¿¡ ´ëÇÑ Åë°èÀûÀÎ ºÐ¼®ÀÌ »ó¼¼È÷ ¼öÇàµÇ¾ú´Ù. ÀÌ·¯ÇÑ µµ±¸µéÀ» »ç¿ëÇÏ¿© ¾òÀº µ¥ÀÌÅÍÀÇ ºÐ¼® ¶ÇÇÑ Æ÷ÇԵǾú´Ù. ºÐ¼®ÀûÀÎ »ç°í¸¦ °­Á¶ÇÏ´Â °ú¸ñµé¿¡ ´ëÇÑ ±àÁ¤ÀûÀΠŵµ°¡ ÇÑ Çбâ 14ÁÖ µ¿¾È À¯ÀǹÌÇÏ°Ô Áõ°¡Çß´Ù. °ú¸ñ °æÇè¿¡ ´ëÇÑ ¾ö°ÝÇÑ ºÐ¼®Àû º»¼º¿¡µµ ºÒ±¸ÇÏ°í, ¼¼Æ÷ »ý¹°ÇÐ ÁÖÁ¦¿¡ ´ëÇÑ Ã³À½ÀÇ °­ÇÑ Èï¹Ì¿Í °íÂ÷¿ø »ç°í ±â´ÉÀº º¯È­µÇÁö ¾Ê¾Ò´Ù. Á¤ÀÇÀûÀÎ ÃøÁ¤ÀÇ ¾îµð¿¡¼­µµ ¼º¿¡ µû¸¥ À¯ÀǹÌÇÑ Â÷ÀÌ´Â ¾ø¾ú´Ù. Æò°¡¿¡¼­´Â ÇлýµéÀÇ °ú¸ñÀÇ È¿°ú¼º¿¡ ´ëÇÑ ÀÌ»óÀûÀÌ°í Çй®ÀûÀΠŵµ¿Í ±×µé¿¡°Ô ¹ÌÄ£ °ú¸ñ È¿°ú¿¡ °üÇÑ Çлý °³ÀÎÀûÀÎ ÀÇ°ß »çÀÌ¿¡ ¶Ñ·ÇÇÑ ¾çºÐ¼ºÀ» º¸¿´À¸¸ç, ¿ì¸®´Â ÀÌ¿¡ ´ëÇØ ³íÀÇÇß´Ù. ¿ì¸®´Â ÀÌ·¯ÇÑ Çü½ÄÀûÀÎ Æò°¡¿Í ÀÏÈ­ÀÇ Ä¿¹Â´ÏÄÉÀ̼ÇÀ¸·ÎºÎÅÍ ¸ð¾ÆÁø ÅëÂûÀÌ °ú¸ñÀ» °èȹÇÏ°í ½ÇÇàÇÏ´Â µ¥ ÀÖ¾î ½ÇÇèÀû ¼öÁ¤ÀÌ ¾î¶»°Ô ±¸ÇöµÇ¾ú´ÂÁö¸¦ º¸°íÇϸ鼭 °á·ÐÀ» ¸Î´Â´Ù.
---------------------------------------------------------------------
Nonscience majors learning science: A theoretical model of motivation (p 1088-1107)
°úÇÐ ºñÀü°øÀÚµéÀÇ °úÇÐ ÇнÀ: µ¿±â¿¡ ´ëÇÑ ÀÌ·ÐÀû ¸ðµ¨

Shawn M. Glynn, Gita Taasoobshirazi, Peggy Brickman

Abstract
A theoretical model of nonscience majors' motivation to learn science was tested by surveying 369 students in a large-enrollment college science course that satisfies a core curriculum requirement. Based on a social-cognitive framework, motivation to learn science was conceptualized as having both cognitive and affective influences that foster science achievement. Structural equation modeling was used to examine the hypothesized relationships among the variables. The students' motivation, as measured by the Science Motivation Questionnaire (SMQ), had a strong direct influence on their achievement, as measured by their science grade point average. The students' motivation was influenced by their belief in the relevance of science to their careers. This belief was slightly stronger in women than men. Essays by the students and interviews with them provided insight into their motivation. The model suggests that instructors should strategically connect science concepts to the careers of nonscience majors through such means as case studies to increase motivation and achievement.

°úÇÐ ºñÀü°øÀÚµéÀÇ °úÇÐ ÇнÀ µ¿±â¿¡ ´ëÇÑ ÀÌ·ÐÀû ¸ðµ¨Àº ÇÙ½É ±³À°°úÁ¤ Çʼö·Î ºÎ°úµÇ´Â °úÇÐ °ú¸ñÀ» ¹è¿ì´Â °úÇÐ ºñÀü°øÀÚ Çлý 369¸íÀ» ´ë»óÀ¸·Î Á¶»çÇÔÀ¸·Î¼­ °ËÁ¤µÇ¾ú´Ù. »çȸ-ÀÎÁöÀû Ʋ¿¡ ±âÃÊÇÏ¿©, °úÇÐ ÇнÀ µ¿±â¸¦, °úÇÐ ¼ºÃëµµ¸¦ ÁõÁø½ÃÅ°´Â ÀÎÁöÀû ¿µÇâ°ú Á¤ÀÇÀû ¿µÇâ ¸ðµÎ¸¦ °¡Áö´Â °ÍÀ¸·Î °³³äÈ­ÇÏ¿´´Ù. ±¸Á¶ ¹æÁ¤½Ä ¸ðµ¨¸µÀÌ º¯¼öµé »çÀÌÀÇ °¡Á¤µÈ °ü·Ã¼ºÀ» Á¶»çÇϱâ À§Çؼ­ »ç¿ëµÇ¾ú´Ù. °úÇÐ µ¿±â Áú¹®Áö(SMQ)¿¡ ÀÇÇؼ­ ÃøÁ¤µÈ ÇлýµéÀÇ µ¿±â´Â ±×µéÀÇ ¼ºÃëµµ¿¡ °­ÇÏ°Ô Á÷Á¢ÀûÀ¸·Î ¿µÇâÀ» ¹ÌÃÆ´Ù. ÇлýµéÀÇ µ¿±â´Â °úÇÐÀÌ ±×µéÀÇ Á÷¾÷¿¡ °ü·ÃµÈ´Ù´Â ½Å³ä¿¡ ÀÇÇØ ¿µÇâÀ» ¹Þ¾Ò´Ù. ÇлýµéÀÌ ¾´ ¿¡¼¼ÀÌ¿Í ÀÎÅͺä´Â ±×µéÀÇ µ¿±â¿¡ ´ëÇÑ ÅëÂûÀ» Á¦°øÇÏ¿´´Ù. ±× ¸ðµ¨Àº ¼ö¾÷ÀÚ°¡ Àü·«ÀûÀ¸·Î °úÇÐ °³³äÀ» °úÇÐ ºñÀü°øÀÚµéÀÇ Á÷¾÷¿¡ ¿¬°ü½ÃÄÑ¾ß ÇÑ´Ù°í Á¦¾ÈÇÑ´Ù.
----------------------------------------------------------------------
Students' cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab (p 1108-1133)
È­ÇÐ ½ÇÇè °æÇè °úÁ¤¿¡¼­ÀÇ ÇлýµéÀÇ ÀÎÁöÀû ÃÊÁ¡ : ÄÄÇ»ÅÍ ½Ã¹Ä·¹ÀÌ¼Ç »çÀü ½ÇÇèÀÇ È¿°ú

T. Mikael Winberg, C. Anders R. Berg

Abstract
To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant teachers were used as indicators of cognitive focus. During the interviews, students' frequency and level of spontaneous use of chemical knowledge served as an indicator of knowledge usability. Results suggest that the simulation influenced students toward posing more theoretical questions during their laboratory work and, regardless of attitudes, exhibiting a more complex, correct use of chemistry knowledge in their interviews. A more relativistic student attitude toward learning was positively correlated with interview performance in both the control and treatment groups.

ÇлýµéÀÇ ÇнÀ °á°ú¸¦ Çâ»ó½ÃÅ°±â À§Çؼ­, ÇнÀÀÚ´Â ´ëÇÐ ¼öÁØÀÇ È­ÇÐ ½ÇÇè È°µ¿¿¡ ¾Õ¼­ »ê-¿°±â ÀûÁ¤¿¡ ±âÃÊÇÑ ÄÄÇ»ÅÍ ½Ã¹Ä·¹ÀÌ¼Ç È°µ¿À» ¼öÇàÇß´Ù. ÇлýµéÀº ÇнÀ¿¡ ´ëÇÑ ÅµµÀÇ °üÁ¡¿¡¼­ ºÐ·ùµÇ¾ú´Ù. ½ÇÇèÈ°µ¿ µ¿¾È¿¡, ÇлýµéÀÌ Á¶±³¿¡°Ô ÇÑ Áú¹®µéÀÌ ÀÎÁöÀû ÃÊÁ¡ÀÇ Áö½ÃÀÚ·Î »ç¿ëµÇ¾ú´Ù. ¸é´ã µ¿¾È¿¡ »ç¿ëÇÑ, ÇлýµéÀÇ È­ÇÐ Áö½ÄÀÇ ÀÚ¹ßÀûÀÎ »ç¿ëÀÇ ºóµµ¼ö¿Í ¼öÁØÀº Áö½Ä À¯¿ë¼ºÀÇ Áö½ÃÀÚ·Î »ç¿ëµÇ¾ú´Ù. ¿¬±¸ °á°ú´Â ½Ã¹Ä·¹À̼ÇÀÌ Çлýµé¿¡°Ô ´õ ¸¹Àº ÀÌ·ÐÀû Áú¹®À» Á¦±âÇÏ°í, ¸é´ã¿¡¼­ È­ÇÐÁö½ÄÀÇ ´õ º¹ÇÕÀûÀÌ°í ¿Ã¹Ù¸¥ »ç¿ëÀ» ³ªÅ¸³»´Â ÂÊÀ¸·Î ¿µÇâÀ» ÁÖ¾ú´Ù°í Á¦¾ÈµÈ´Ù. ÇнÀ¿¡ ´ëÇÑ »ó´ë·ÐÀû Çлý ŵµ´Â ÅëÁ¦±×·ì°ú ½ÇÇè±×·ì ¸ðµÎ¿¡¼­ ¸é´ã ¼öÇà°ú ±àÁ¤Àû »ó°ü°ü°è¸¦ º¸¿´´Ù.
----------------------------------------------------------------------
Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice (p 1134-1159)
À̷аú Áõ°ÅÀÇ Á¶È­ : ÇлýµéÀÇ ½ÇÇè È°µ¿¿¡ ´ëÇÑ ÀνķРÀ̷еéÀÇ È¿°ú

Rachel Havdala, Guy Ashkenazi

Abstract
Students' views about science were correlated with their approaches to lab practice. Three distinct cases are discussed in detail: empiricist-oriented, rationalist-oriented, and constructivist-oriented students. A coherent epistemological theory was constructed for each case, by considering the different degrees of certainty and confidence each student attributed to theoretical versus experimental knowledge in science. These theories could explain the difference between the students' methods of preparation for the lab session and their approaches to writing the lab report. It was shown that overconfidence in one type of knowledge led to oversimplification of the relation between theory and evidence. Findings suggest that epistemological theories play a crucial role in determining whether and how students coordinate theory and empirical evidence in their lab practice. Inspecting and correcting students' lab reports in accordance with these findings can offer an easy way to identify students' epistemological theories and to provide appropriate feedback.

°úÇп¡ ´ëÇÑ ÇлýµéÀÇ °üÁ¡Àº ±×µéÀÇ ½ÇÇè È°µ¿ ¹æ¹ý°ú ¿¬°üµÈ´Ù. °æÇèÁÖÀÇÀÚ-ÁöÇâÀÇ Çлýµé, ÇÕ¸®ÁÖÀÇÀÚ-ÁöÇâÀÇ Çлýµé, ±¸¼ºÁÖÀÇÀÚ-ÁöÇâÀÇ Çлýµé, ÀÌ·¸°Ô ±¸ºÐµÇ´Â ¼¼ °¡Áö °æ¿ìµéÀÌ ÀÚ¼¼È÷ ³íÀǵǾú´Ù.
°¢°¢ÀÇ °æ¿ì¿¡ ºÎÇÕÇÏ´Â ÀνķÐÀû ÀÌ·ÐÀº °¢ ÇлýµéÀÌ °úÇп¡¼­ ÀÌ·ÐÀû Áö½Ä°ú ½ÇÇèÀû Áö½Ä¿¡ ÀÖ¾î ¾î´À ÂÊ¿¡ È®½Ç¼º°ú ½Å·Ú¼ºÀ» ´õ º¸À̴°¡¸¦ °í·ÁÇÔÀ¸·Î¼­ ºÐ·ùÇÏ¿´´Ù. ÀÌ·¯ÇÑ À̷еéÀº ÇлýµéÀÌ ½ÇÇè ¼¼¼ÇÀ» ÁغñÇÏ´Â ¹æ¹ý°ú ½ÇÇè º¸°í¼­¸¦ ¾²´Â ¹æ¹ý »çÀÌÀÇ Â÷À̸¦ ¼³¸íÇÒ °ÍÀÌ´Ù. Áö½ÄÀÇ ÇÑ °¡Áö ÇüÅ¿¡ ´ëÇÑ °úµµÇÑ ½Å·Ú´Â À̷аú Áõ°Å »çÀÌÀÇ °ü·Ã¿¡ ´ëÇؼ­ °úµµÇÑ ´Ü¼øÈ­·Î À̲ö´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù. ÀÌ ¿¬±¸¿¡¼­ ¹ß°ßÇÑ »ç½Çµé·ÎºÎÅÍ ÀνķÐÀû ÀÌ·ÐÀÌ ½ÇÇèÈ°µ¿¿¡¼­ À̷аú °æÇèÀû Áõ°Å¸¦ ÇлýµéÀÌ Á¶Á¤ÇÏ´ÂÁö ¾î¶²Áö ±×¸®°í ¾î¶»°Ô Á¶Á¤ÇÏ´ÂÁö¸¦ °áÁ¤ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù´Â °ÍÀ» Á¦¾ÈÇÑ´Ù. ÀÌ·¯ÇÑ ¹ß°ß »ç½Çµé¿¡ µû¶ó Çлý ½ÇÇ躸°í¼­¸¦ °ËÅäÇÏ°í ¼öÁ¤ÇØ ÁÖ´Â °ÍÀº ÇлýµéÀÇ ÀνķÐÀû »ý°¢µéÀ» È®ÀÎÇÏ°í ÀûÀýÇÑ Çǵå¹éÀ» Á¦°øÇÏ´Â ½¬¿î ¹æ¹ýÀÏ ¼ö ÀÖ´Ù.
---------------------------------------------------------------------
Analysis of verbal interactions during an extended, open-inquiry general chemistry laboratory investigation (p 1160-1186)
È®ÀåµÈ, °³¹æÀû Ž±¸ÀÇ ÀÏ¹Ý È­ÇÐ ½ÇÇè Á¶»ç¿¡¼­ ¾ð¾îÀû »óÈ£ÀÛ¿ë ºÐ¼®

Rebecca A. Krystyniak, Henry W. Heikkinen

Abstract
This study explores effects of participation by second-semester college general chemistry students in an extended, open-inquiry laboratory investigation. Verbal interactions among a student lab team and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were recorded, transcribed, and analyzed. Coding categories were developed using the constant comparison method. Findings indicate that, during open-inquiry activities, the student team interacted less often, sought less instructor guidance, and talked less about chemistry concepts than during their non-inquiry activities. Evidence suggests that the students employed science process skills and engaged in higher-order thinking during both types of laboratory activities. Implications for including open-inquiry experiences in general chemistry laboratory programs on student understanding of science as inquiry are discussed.

ÀÌ ¿¬±¸´Â 2Çб⠴ëÇÐ ÀϹÝÈ­ÇÐ ÇлýµéÀÌ È®ÀåµÇ°í °³¹æµÈ Ž±¸ ½ÇÇè È°µ¿¿¡ Âü¿©ÇÑ È¿°ú¸¦ Ž»öÇÑ °ÍÀÌ´Ù. Çлý ½ÇÇèÆÀ ³»¿¡¼­ÀÇ ¾ð¾îÀû »óÈ£ÀÛ¿ë°ú ¼¼ ¹øÀÇ °³¹æ Ž±¸ ½ÇÇè ¼¼¼Ç°ú µÎ ¹øÀÇ ºñŽ±¸ ¼¼¼Ç µ¿¾È ±×µéÀÇ ¼ö¾÷ÀÚ¿ÍÀÇ ¾ð¾îÀû »óÈ£ÀÛ¿ëÀÌ ³ìÀ½µÇ°í, Àü»çµÇ°í ºÐ¼®µÇ¾ú´Ù. ÀÏÁ¤ÇÑ ºñ±³ ¹æ¹ýÀ» »ç¿ëÇÏ¿© ºÎÈ£¿Í ¿µ¿ªµéÀ» °³¹ßÇÏ¿´´Ù. ¹ß°ß »ç½ÇÀº ´ÙÀ½°ú °°´Ù. °³¹æÀû Ž±¸ È°µ¿ µ¿¾È¿¡, ÇлýµéÀº ºñŽ±¸ È°µ¿ ¶§º¸´Ù »óÈ£ÀÛ¿ëÀÌ Àû¾ú°í ¼ö¾÷ÀÚÀÇ ¾È³»¸¦ ´õ Àû°Ô ¿ä±¸ÇßÀ¸¸ç, È­ÇÐ °³³ä¿¡ ´ëÇؼ­ ¸»ÇÏ´Â °Íµµ ´õ Àû¾ú´Ù. ¶ÇÇÑ µÎ °¡Áö ÇüÅÂÀÇ ½ÇÇè È°µ¿ ¸ðµÎ¿¡¼­ °úÇÐ °úÁ¤ ±â¼úµé°ú ´õ ³ôÀº Â÷¿øÀÇ »ç°í¸¦ Çß´Ù´Â Áõ°ÅµéÀ» ¾ò¾ú´Ù. ÇлýµéÀÌ Å½±¸·Î¼­ÀÇ °úÇÐÀ» ÀÌÇØÇÏ´Â ÀÏ¹Ý È­ÇÐ ½ÇÇè ÇÁ·Î±×·¥¿¡¼­ °³¹æÀû Ž±¸ °æÇèÀ» Æ÷ÇÔÇϱâ À§ÇÑ ½Ã»çÁ¡ÀÌ ³íÀǵǾú´Ù.
----------------------------------------------------------------------
Understanding the science experiences of successful women of color: Science identity as an analytic lens (p 1187-1218)
¼º°øÇÑ ºñ-¹éÀÎ ¿©¼ºµéÀÇ °úÇÐ °æÇè ÀÌÇØÇϱâ : ºÐ¼®Àû ·»Áî·Î¼­ÀÇ °úÇÐ Á¤Ã¼¼º

Heidi B. Carlone, Angela Johnson

Abstract
In this study, we develop a model of science identity to make sense of the science experiences of 15 successful women of color over the course of their undergraduate and graduate studies in science and into science-related careers. In our view, science identity accounts both for how women make meaning of science experiences and how society structures possible meanings. Primary data included ethnographic interviews during students' undergraduate careers, follow-up interviews 6 years later, and ongoing member-checking. Our results highlight the importance of recognition by others for women in the three science identity trajectories: research scientist; altruistic scientist; and disrupted scientist. The women with research scientist identities were passionate about science and recognized themselves and were recognized by science faculty as science people. The women with altruistic scientist identities regarded science as a vehicle for altruism and created innovative meanings of science, recognition by others, and woman of color in science. The women with disrupted scientist identities sought, but did not often receive, recognition by meaningful scientific others. Although they were ultimately successful, their trajectories were more difficult because, in part, their bids for recognition were disrupted by the interaction with gendered, ethnic, and racial factors. This study clarifies theoretical conceptions of science identity, promotes a rethinking of recruitment and retention efforts, and illuminates various ways women of color experience, make meaning of, and negotiate the culture of science.
ÀÌ ¿¬±¸¿¡¼­ ¿ì¸®´Â ´ëÇп¡¼­ °úÇÐÀ» Àü°øÇÏ°í Á¹¾÷ ÈÄ °úÇÐ ¿¬±¸¸¦ ÇÏ¿´À¸¸ç, °úÇаú °ü·ÃµÈ Á÷¾÷À» °¡Áø 15¸íÀÇ ¼º°øÇÑ ºñ-¹éÀÎ ¿©¼ºµéÀÇ °úÇÐ °æÇèÀ» ÀÌÇØÇϱâ À§Çؼ­ °úÇÐ Á¤Ã¼¼º ¸ðµ¨À» °³¹ßÇÏ¿´´Ù. ¿ì¸®ÀÇ °üÁ¡¿¡¼­, °úÇÐ Á¤Ã¼¼ºÀº ¿©¼ºµéÀÌ °úÇÐ °æÇèÀÇ Àǹ̸¦ ¾î¶»°Ô »ý°¢ÇÏ´ÂÁö, »çȸ°¡ °¡´ÉÇÑ Àǹ̸¦ ¾î¶»°Ô Á¶Á÷È­ÇÏ´ÂÁö¿¡ ´ëÇÑ °ÍµéÀ» ¼³¸íÇÑ´Ù. 1Â÷ µ¥ÀÌÅÍ´Â ÇкΰúÁ¤¿¡¼­ ÀÎÁ¾ÇÐÀû ¸é´ã °á°ú, ±× ÈÄ 6³â °£ÀÇ ¸é´ã °á°ú, ÇöÀç »óȲ Á¡°Ë µîÀÌ´Ù. ¿ì¸®ÀÇ °á°ú´Â ¼¼ °¡ÁöÀÇ °úÇÐ Á¤Ã¼¼º ¿µ¿ª¿¡ ÇØ´çÇÏ´Â ¿¬±¸ °úÇÐÀÚ, ÀÌŸÁÖÀÇ °úÇÐÀÚ, ºØ±«µÈ °úÇÐÀÚ µî¿¡¼­ ¿©¼ºµé¿¡ ´ëÇÑ ´Ù¸¥ »ç¶÷µéÀÇ ÀνÄÀÇ Á߿伺À» °­Á¶ÇÑ´Ù. ¿¬±¸ °úÇÐÀÚ Á¤Ã¼¼ºÀ» °¡Áø ¿©¼ºµéÀº °úÇп¡ ´ëÇÑ ¿­ÀǸ¦ °¡Áö°í ÀÖÀ¸¸ç ½º½º·Î¸¦ ÀÎÁ¤ÇÏ¸ç ±³¼ö´ÜÀ¸·ÎºÎÅÍ °úÇÐÀÏ¿øÀ¸·Î ÀÎÁ¤À» ¹Þ¾Ò´Ù. ÀÌŸÁÖÀÇ °úÇÐÀÚ Á¤Ã¼¼ºÀ» °¡Áø ¿©¼ºµéÀº °úÇÐÀ» ÀÌŸÁÖÀǸ¦ À§ÇÑ ¸Å°³Ã¼·Î °£ÁÖÇß°í °úÇÐÀÇ Çõ½ÅÀûÀÎ Àǹ̸¦ âÁ¶Çß´Ù. ºØ±«µÈ °úÇÐÀÚ Á¤Ã¼¼ºÀ» °¡Áø ¿©¼ºµéÀº ÀǹÌÀÖ´Â °úÇÐÀûÀÎ °Íµé¿¡ ÀÇÇÑ ÀνÄÀ» ±¸ÇßÀ¸³ª Á¾Á¾ ±×·¯ÇÑ ÀνÄÀ» ¹Þ¾ÆµéÀÌÁö ¾Ê¾Ò´Ù. ±×µéÀÌ ±Ã±ØÀûÀ¸·Î ¼º°øÇß´ÙÇÏ´õ¶óµµ, ±×µéÀÇ ±ËÀûÀº ´õ ¾î·Á¿ü´Ù. ¿Ö³ÄÇϸé, ÀÎÁ¤À» À§ÇÑ ±×µéÀÇ ³ë·ÂÀÌ ¼º, ÀÎÁ¾, ¹ÎÁ·Àû ¿ä¼Ò¸¦ °¡Áø »óÈ£ÀÛ¿ë¿¡ ÀÇÇؼ­ ºØ±«µÇ¾ú±â ¶§¹®ÀÌ´Ù. ÀÌ ¿¬±¸´Â °úÇÐ Á¤Ã¼¼ºÀÇ ÀÌ·ÐÀû °³³äÀ» ºÐ¸íÈ÷ ÇÏ°í, ½Å±Ô ¸ðÁý°ú º¸Á¸ ³ë·Â¿¡ ´ëÇÑ Àç»ç°í¸¦ ÁõÁøÇÏ°í ºñ-¹éÀÎ ¿©¼ºÀÇ °æÇèÀ» ´Ù¾çÇÏ°Ô ÇÏ´Â ¹æ¹ýÀ» ¼³¸íÇÏ°í, °úÇÐÀÇ ¹®È­¸¦ Á¶Á¤ÇÏ´Â °ÍÀÌ´Ù.
---------------------------------------------------------------------
An analysis of the processes of change in two science teachers educators' thinking (p 1219-1245)
µÎ ¸íÀÇ °úÇб³»ç ±³À°ÀÚÀÇ »ç°í¿¡¼­ÀÇ º¯È­ °úÁ¤ ºÐ¼®

Hava Greensfeld, Ilana Elkad-Lehman

Abstract
This study examined the processes of change in thinking as a means of learning about the professional development of two science teacher educators. A qualitative methodology was used. The main research tool was a semistructured in-depth interview. The primary data analyzed came from two science teacher educators, selected from a broader set of seven. Findings emphasize the importance of questions regarding the knowledge possessed by teacher educators and of the questions regarding the role of science teacher educators. That is, the knowledge of an expert science teacher educator was more than a list of givens; it was personal and context-bound. This study contributes new insight into the processes of teacher educators' professional development and change in their thinking.

ÀÌ ¿¬±¸¿¡¼­´Â µÎ ¸íÀÇ °úÇб³»ç ±³À°ÀÚÀÇ Àü¹®¼º °³¹ß¿¡ ´ëÇÑ ÇнÀ ¹æ¹ýÀ¸·Î¼­ÀÇ »ç°í¿¡ ÀÖ¾î º¯È­ÀÇ °úÁ¤À» Á¶»çÇß´Ù. ÁúÀûÀÎ ¿¬±¸¹æ¹ýÀÌ »ç¿ëµÇ¾ú´Ù. ÁÖ¿ä ¿¬±¸ µµ±¸´Â ¹Ý±¸Á¶È­µÈ ½ÉÃþ¸é´ã¹ýÀÌ¿´´Ù. ±âÃÊ µ¥ÀÌÅÍ´Â µÎ ¸íÀÇ °úÇб³»ç ±³À°ÀڷκÎÅÍ ¾ò¾îÁ³À¸¸ç, À̵éÀº Á»´õ ³ÐÀº ¹üÀ§ÀÇ 7¸í Áß¿¡¼­ ¼±Á¤µÇ¾ú´Ù. ¹ß°ß »ç½ÇÀº ±³»ç±³À°ÀÚ°¡ °¡Áö°í ÀÖ´Â Áö½Ä¿¡ °üÇÑ Áú¹®ÀÇ Á߿伺°ú °úÇб³»ç ±³À°ÀÚÀÇ ¿ªÇÒ¿¡ °üÇÑ Áú¹®ÀÇ Á߿伺À» °­Á¶ÇÑ´Ù. Áï, Àü¹®ÀûÀÎ °úÇÐ ±³»ç ±³À°ÀÚÀÇ Áö½ÄÀº ÁÖ¾îÁø ¸®½ºÆ®º¸´Ù ´õ ¸¹¾Ò´Ù; ±×°ÍÀº °³ÀÎÀûÀÌ°í »óȲ ±¸¼ÓÀûÀ̾ú´Ù. ÀÌ ¿¬±¸ °á°ú´Â ±³»ç±³À°ÀÚÀÇ Àü¹®¼º °³¹ßÀÇ °úÁ¤¿¡ ´ëÇÑ »õ·Î¿î ÅëÂû°ú ±×µé »ç°íÀÇ º¯È­¿¡ ´ëÇÑ ÅëÂû¿¡ ±â¿©ÇÒ °ÍÀÌ´Ù.

±è¿ø¼÷, ±è¿µ¹Î
ºÎ»ê´ëÇб³ ¹°¸®±³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò