"°úÇй®È­±³À°"

2008-01-25 (Vol 5, No 1)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

Journal of Research in Sscience Teaching, (January, 2008)

-----------------------------------------------------------Thematic continuities: Talking and thinking about adaptation in a socially complex classroom (p 1-30)
ÁÖÁ¦ÀÇ ¿¬¼Ó¼º : »çȸÀû º¹ÇÕ ±³½Ç¿¡¼­ÀÇ ¡°ÀûÀÀ¡±¿¡ ´ëÇÑ ´ãÈ­¿Í »ý°¢

Doris Ash

Abstract
In this study I rely on sociocultural views of learning and teaching to describe how fifth-sixth-grade students in a Fostering a Community of Learners (FCL) classroom gradually adopted scientific ideas and language in a socially complex classroom. Students practiced talking science together, using everyday, scientific, and hybrid discourses as they studied endangered species. Students' overarching content themes, or thematic continuities, acted as generative scaffolds for developing complex lines of inquiry, leading ultimately to the appropriation of aspects of the biological principle of adaptation. Thematic continuities provided an organizing framework for thinking and talking about previously disconnected science facts, and set the stage for the adaptationist stance. Mixed method data analyses relied on written assessments, in-depth guided clinical interviews, video and audiotaping of small and large group participant structures, in-class student work, and ethnographic notes. Data analysis included two discrete levels, the macro (whole and half class) and the intermediate (case study of one small group) to capture both holistic and detailed aspects of dialogue.

ÀÌ ¿¬±¸¿¡¼­´Â ±³¼ö ¡¤ ÇнÀ¿¡ ´ëÇÑ »çȸ¹®È­ÀûÀÎ °üÁ¡À¸·Î, FCL(a Fostering a Community of Learners) ¼Ò¼Ó 5-6Çгâ ÇлýµéÀÌ »çȸÀû º¹ÇÕ ±³½Ç¿¡¼­ °úÇÐ °³³ä°ú ¿ë¾î¸¦ ¾î¶»°Ô Á¡Â÷ÀûÀ¸·Î ¹Þ¾Æµé¿´´ÂÁö¸¦ ±â¼úÇÏ¿´´Ù. ¸êÁ¾À§±â Á¾µéÀ» ¹è¿ì¸é¼­, ÇлýµéÀº ÇÔ²² °úÇÐÀ» ¸»ÇÏ°í, ÀÏ»óÀûÀÌ°í, °úÇÐÀûÀ̸ç, È¥ÇÕÀûÀÎ(hybrid)ÀÇ ´ãÈ­¸¦ ³ª´©´Â °ÍÀ» ½ÇÇàÇÏ¿´´Ù. Çлýµé »çÀÌÀÇ ÁÖÁ¦ÀÇ ¸¸Á·ÇÔ, ȤÀº ÁÖÁ¦ÀÇ ¿¬¼Ó¼ºÀº Ž±¸ÀÇ º¹ÀâÇÑ °úÁ¤À» ¹ß´Þ½ÃÅ°´Âµ¥ »ý¼º·Â ÀÖ´Â »À´ë°¡ µÇ¾úÀ¸¸ç, ±Ã±ØÀûÀ¸·Î ÀûÀÀÀÇ »ý¹°ÇÐÀû ¿ø¸®ÀÇ °üÁ¡À» °¡Áöµµ·Ï À̲ø¾ú´Ù. ÁÖÁ¦ÀÇ ¿¬¼Ó¼ºÀº ÀÌÀüÀÇ ºñ¿¬¼ÓÀûÀÎ °úÇÐÀû »ç½Çµé¿¡ ´ëÇÑ ´ãÈ­¿Í »ý°¢¿¡ ´ëÇÑ Æ²À» Á¶Á÷Çϵµ·Ï Á¦¾ÈÇß°í, ¹Þ¾ÆµéÀÏ ¼ö ÀÖ´Â ÀÚ¼¼¸¦ °®µµ·Ï ¸¸µé¾ú´Ù. ¿¬±¸ ¹æ¹ýÀº º¹ÇÕ ¿¬±¸ ¹æ¹ýÀ¸·Î¼­ ¼­¸é Æò°¡, ¾È³»µÈ ½ÉÃþ ¸é´ã, ¼ÒÁý´Ü°ú ´ëÁý´Ü Âü¿©ÀÚ ±¸Á¶¿¡¼­ÀÇ ³ìÈ­¿Í ³ìÀ½, Çб޿¡¼­ÀÇ Çлý È°µ¿, ÀÎÁ¾ÇÐÀûÀÎ ³ëÆ® µîÀÌ »ç¿ëµÇ¾ú´Ù. µ¥ÀÌÅÍ ºÐ¼®Àº ´ëÈ­ÀÇ ÀüüÀûÀÎ °üÁ¡°ú ¼¼ºÎÀûÀÎ °üÁ¡ ¸ðµÎ¸¦ ¾Ë¾Æ³»±â À§Çؼ­ ±¸º°µÇ´Â µÎ °¡ÁöÀÇ ¼öÁØ- ´ëÁý´Ü ¼öÁØ(Àüü¿Í Àý¹ÝÀÇ ÇбÞ)°ú Áß°£ ¼öÁØ(ÇϳªÀÇ ¼Ò±×·ì »ç·Ê ¿¬±¸)-À¸·Î ¼öÇàÇÏ¿´´Ù.
----------------------------------------------------------
Science achievement of English language learners in urban elementary schools: Results of a first-year professional development intervention (p 31-52)
µµ½Ã ÃʵîÇб³¿¡¼­ ¿µ¾î¸¦ »ç¿ëÇÏ´Â ÇнÀÀÚÀÇ °úÇÐ ¼ºÃëµµ: Àü¹®¼º °³¹ß ÀÚ·á ÅõÀÔ Ã³À½ 1³â°£ÀÇ °á°ú

Okhee Lee, Jaime Maerten-Rivera, Randall D. Penfield, Kathryn LeRoy, Walter G. Secada

Abstract
This study is part of a 5-year professional development intervention aimed at improving science and literacy achievement of English language learners (or ELL students) in urban elementary schools within an environment increasingly driven by high-stakes testing and accountability. Specifically, the study examined science achievement at the end of the first-year implementation of the professional development intervention that consisted of curriculum units and teacher workshops. The study involved 1,134 third-grade students at seven treatment schools and 966 third-grade students at eight comparison schools. The results led to three main findings. First, treatment students displayed a statistically significant increase in science achievement. Second, there was no statistically significant difference in achievement gains between students at English to Speakers of Other Language (ESOL) levels 1 to 4 and students who had exited from ESOL or never been in ESOL. Similarly, there was no significant difference in achievement gains between students who had been retained on the basis of statewide reading test scores and students who had never been retained. Third, treatment students showed a higher score on a statewide mathematics test, particularly on the measurement strand emphasized in the intervention, than comparison students. The results indicate that through our professional development intervention, ELL students and others in the intervention learned to think and reason scientifically while also performing well on high-stakes testing.

ÀÌ ¿¬±¸´Â ºñÁß ÀÖ´Â Å×½ºÆ®¿Í ±×¿¡ µû¸¥ Ã¥¹«¼º ¿ä±¸ °æÇâÀÌ Áõ°¡ÇÏ°í ÀÖ´Â µµ½Ã ÃʵîÇб³¿¡¼­ ¿µ¾î¸¦ »ç¿ëÇÏ´Â ÇнÀÀÚ(ȤÀº ELL Çлýµé)µéÀÇ °úÇаú ÀÐ°í ¾²´Â ´É·ÂÀÇ ¼ºÃëµµ Çâ»ó¿¡ ¸ñÀûÀ» µÐ 5³â°£ÀÇ Àü¹®¼º °³¹ß ÀÚ·á ÅõÀÔÀÇ ÀϺÎÀÌ´Ù. Ưº°È÷, ÀÌ ¿¬±¸´Â ±³À°°úÁ¤ ´Ü¿øµé°ú ±³»ç ¿öÅ©¼óÀ¸·Î ±¸¼ºµÈ Àü¹®¼º °³¹ß ÅõÀÔÀÇ ¼öÇà ù 1³â ¸»±â¿¡ °úÇÐ ¼ºÃëµµ¸¦ °Ë»çÇÏ´Â °ÍÀÌ´Ù. ÀÌ ¿¬±¸¿¡´Â 7°³ÀÇ ½ÇÇè Çб³ 1,134¸íÀÇ 3Çгâ Çлýµé°ú 8°³ÀÇ ºñ±³ Çб³ 966¸íÀÇ 3Çгâ ÇлýµéÀÌ Æ÷ÇԵǾú´Ù. ¿¬±¸ °á°ú, 3°¡ÁöÀÇ Áß¿äÇÑ ¹ß°ßÁ¡ÀÌ ÀÖ¾ú´Ù. ù ¹ø°, ½ÇÇè ÇлýµéÀº °úÇÐ ¼ºÃëµµ¿¡¼­ Åë°èÀûÀ¸·Î À¯ÀǹÌÇÑ Áõ°¡¸¦ º¸¿´´Ù. µÎ ¹ø°, ¼ºÃëµµ Á¡¼ö¿¡¼­ ESOL(´Ù¸¥ ¾ð¾î¸¦ »ç¿ëÇÏ´Â ÇнÀÀÚÀÇ ¿µ¾î) 1-4 ¼öÁØÀÇ Çлýµé°ú ESOLÀ» ¹þ¾î³­ ÇлýÀ̳ª ESOL¿¡ °áÄÚ À־ ÀûÀÌ ¾ø´Â Çлýµé »çÀÌ¿¡¼­ Åë°èÀûÀ¸·Î À¯ÀǹÌÇÑ Â÷ÀÌ´Â ¾ø¾ú´Ù. À¯»çÇÏ°Ô, ÁÖ ÀüüÀÇ Àбâ Å×½ºÆ®¿¡¼­ À¯±ÞµÈ ÀûÀÌ ÀÖ¾ú´ø Çлýµé°ú ÇÑ ¹øµµ À¯±ÞµÈ ÀûÀÌ ¾ø´Â Çлýµé »çÀÌ¿¡¼­µµ ¼ºÃëµµ Á¡¼ö¿¡¼­ À¯ÀǹÌÇÑ Â÷ÀÌ°¡ ¾ø¾ú´Ù. ¼¼ ¹ø°, ½ÇÇè ÇлýµéÀº ÁÖ ÀüüÀÇ ¼öÇÐ Å×½ºÆ®¿¡¼­ Ưº°È÷ ÅõÀÔÀÚ·á¿¡¼­ °­Á¶µÈ ÃøÁ¤¿ä¼Ò¿¡¼­ ºñ±³ Çлýµéº¸´Ù ´õ ³ôÀº Á¡¼ö¸¦ º¸¿´´Ù. ±× °á°ú´Â ¿ì¸®ÀÇ Àü¹®¼º °³¹ß ÅõÀÔÀ» ÅëÇؼ­ ELLÇлýµé»Ó¸¸ ¾Æ´Ï¶ó ±× ¿Ü Çлýµéµµ °úÇÐÀûÀ¸·Î »ý°¢ÇÏ°í Ãß·ÐÇÏ´Â °ÍÀ» ¹è¿üÀ» »Ó¸¸ ¾Æ´Ï¶ó ¿ª½Ã ºñÁßÀÖ´Â Å×½ºÆ®¸¦ Àß ¼öÇàÇß´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù.
----------------------------------------------------------
Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning (p 53-78)
°úÇÐÀû ¼³¸íµé : Çлý ÇнÀ¿¡¼­ ±³»çÀÇ ±³¼öÀû ½Ç½ÀÀÇ È¿°ú¸¦ Ư¡Áþ°í Æò°¡Çϱâ

Katherine L. McNeill, Joseph Krajcik

Abstract
Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific explanations during a middle school chemistry unit. Thirteen teachers enacted a project-based chemistry unit, How can I make new stuff from old stuff?, with 1197 seventh grade students. We videotaped each teacher's enactment of the focal lesson on scientific explanation and then coded the videotape for four different instructional practices: modeling scientific explanation, making the rationale of scientific explanation explicit, defining scientific explanation, and connecting scientific explanation to everyday explanation. Our results suggest that when teachers introduce scientific explanation, they vary in the practices they engage in as well as the quality of their use of these practices. We also found that teachers' use of instructional practices can influence student learning of scientific explanation and that the effect of these instructional practices depends on the context in terms of what other instructional practices the teacher uses.

±³»ç ½Ç½ÀÀº °úÇРŽ±¸ ¼ö¾÷(¿¹¸¦ µé¸é, °úÇÐÀû ¼³¸í°ú °°Àº)¿¡¼­ ÇлýµéÀ» Áö¿øÇϱâ À§Çؼ­ ÇʼöÀûÀÌ´Ù. ÀÌ ¿¬±¸¿¡¼­´Â, ±³»çµéÀÌ °úÇÐÀû ¼³¸íÀ» µµÀÔÇÒ ¶§, ¾î¶² ±³¼öÀûÀÎ ½Ç½ÀµéÀ» µµÀÔÇÏ¿´´ÂÁö, ±×¸®°í ÀÌ·¯ÇÑ ½Ç½ÀµéÀÌ ÁßÇб³ È­ÇÐ ´Ü¿øÀ» ¹è¿ì´Â µ¿¾È¿¡ °úÇÐÀû ¼³¸íÀ» ±¸¼ºÇÏ´Â ÇлýµéÀÇ ´É·Â¿¡ ¿µÇâÀ» ÁÖ¾ú´ÂÁö¸¦ °Ë»çÇÏ¿´´Ù. 13¸íÀÇ ±³»çµéÀÌ 1197¸íÀÇ 7Çгâ ÇлýµéÀ» µ¥¸®°í ÇÁ·ÎÁ§Æ®¿¡ ±âÃÊÇÑ È­ÇÐ ´Ü¿ø- ¿À·¡µÈ Àç·á¸¦ °¡Áö°í ¾î¶»°Ô »õ·Î¿î Àç·á¸¦ ¸¸µé ¼ö Àִ°¡? -À» °¡¸£ÃÆ´Ù. ¿ì¸®´Â °¢ ±³»çµéÀÇ °úÇÐÀû ¼³¸í¿¡ ÃÊÁ¡À» µÐ ¼ö¾÷À» ³ìÈ­ÇÏ¿´°í, ¼­·Î ´Ù¸¥ 4 °¡ÁöÀÇ ±³¼öÀûÀÎ ½Ç½ÀµéÀ» °¡Áö°í ³ìÈ­ ÀڷḦ ºÎȣȭÇÏ¿´´Ù : °úÇÐÀû ¼³¸íÀ» ¸ðÇüÈ­Çϱâ, °úÇÐÀû ¼³¸í ÈÄ¿¡ ÀÌ·ÐÀû ¼³¸íÇϱâ, °úÇÐÀû ¼³¸íÀ» Á¤ÀÇÇϱâ, °úÇÐÀû ¼³¸í°ú ÀÏ»óÀû ¼³¸íÀ» °ü·ÃÁþ±â.
¿¬±¸ °á°ú ¿ì¸®´Â ±³»çµéÀÌ °úÇÐÀû ¼³¸íÀ» µµÀÔÇÒ ¶§, ½Ç½ÀµéÀ» »ç¿ëÇÏ´Â Áú»Ó¸¸ ¾Æ´Ï¶ó µµÀÔÇÏ´Â ½Ç½ÀµéÀ» ´Ù¾çÈ­ÇÑ´Ù´Â °ÍÀ» Á¦¾ÈÇÑ´Ù. ¿ì¸®´Â ±³»çµéÀÇ ±³¼öÀûÀÎ ½Ç½ÀµéÀÇ »ç¿ëÀÌ ÇлýµéÀÇ °úÇÐÀû ¼³¸í¿¡ ´ëÇÑ ÇнÀ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ±³¼öÀûÀÎ ½Ç½ÀµéÀÇ È¿°ú´Â ±³»çµéÀÌ »ç¿ëÇÏ´Â ´Ù¸¥ ±³¼öÀûÀÎ ½Ç½ÀµéÀÇ »óȲ¿¡ ÀÇÁ¸ÇÑ´Ù´Â °ÍÀ» ¹ß°ßÇÏ¿´´Ù.
----------------------------------------------------------
Contextualizing instruction: Leveraging students' prior knowledge and experiences to foster understanding of middle school science (p 79-100)
¼ö¾÷À» ¸Æ¶ôÈ­Çϱâ : ÇлýµéÀÇ ¼±Áö½Ä°ú ¼±°æÇèÀ» ÁßÇб³ °úÇÐ ÀÌÇظ¦ ÁõÁøÇϴµ¥ µµÀÔÇϱâ

Ann E. Rivet, Joseph S. Krajcik

Abstract
Contextualizing science instruction involves utilizing students' prior knowledge and everyday experiences as a catalyst for understanding challenging science concepts. This study of two middle school science classrooms examined how students utilized the contextualizing aspects of project-based instruction and its relationship to their science learning. Observations of focus students' participation during instruction were described in terms of a contextualizing score for their use of the project features to support their learning. Pre/posttests were administered and students' final artifacts were collected and evaluated. The results of these assessments were compared with students' contextualizing scores, demonstrating a strong positive correlation between them. These findings provide evidence to support claims of contextualizing instruction as a means to facilitate student learning, and point toward future consideration of this instructional method in broader research studies and the design of science learning environments.

°úÇÐ ¼ö¾÷À» ¸Æ¶ôÈ­ÇÏ´Â °ÍÀº ÇлýµéÀÇ ¼±Áö½Ä°ú ÀÏ»ó °æÇèÀ» µµÀüÀûÀÎ °úÇÐ °³³äµéÀ» ÀÌÇØÇϱâ À§ÇÑ Ã˸ŷμ­ È°¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÑ´Ù. µÎ °³ÀÇ ÁßÇб³ °úÇÐ ±³½Ç¿¡ ´ëÇÑ À̹ø ¿¬±¸¿¡¼­´Â ÇлýµéÀÌ ÇÁ·ÎÁ§Æ®-±â¹Ý ¼ö¾÷À» ¸Æ¶ôÈ­ÇÏ´Â °üÁ¡µéÀ» ¾î¶»°Ô È°¿ëÇÏ°í °úÇÐ ÇнÀ¿¡ ¾î¶»°Ô °ü·ÃÁþ´ÂÁö Á¶»çÇÏ¿´´Ù. ¼ö¾÷ÇÏ´Â µ¿¾È ¿¬±¸ ´ë»ó ÇлýµéÀÇ Âü¿©¿¡ ´ëÇÑ °üÂûÀ» ÅëÇØ ÇлýµéÀÇ ÇнÀÀ» Áö¿øÇϱâ À§ÇÑ ÇÁ·ÎÁ§Æ® Ư¼ºµéÀÇ »ç¿ë¿¡ ´ëÇÑ ¸Æ¶ôÈ­ÇÏ´Â Á¡¼öÀÇ Ç×À¸·Î ±â¼úÇÏ¿´´Ù. »çÀü/»çÈÄ °Ë»ç°¡ ½Ç½ÃµÇ¾ú°í ÇлýµéÀÇ ¸¶Áö¸· °á°ú¹°µéÀÌ ¼öÁýµÇ¾ú°í Æò°¡µÇ¾ú´Ù. ÀÌ·¯ÇÑ Æò°¡ÀÇ °á°ú´Â ÇлýµéÀÇ ¸Æ¶ôÈ­ÇÏ´Â Á¡¼ö¿Í ºñ±³µÇ¾ú°í ±×µé »çÀÌ¿¡ °­ÇÑ ±àÁ¤ÀûÀÎ °ü·Ã¼ºÀ» ³ªÅ¸³»¾ú´Ù. ÀÌ·¯ÇÑ ¹ß°ßÁ¡Àº ÇлýµéÀÇ ÇнÀÀ» ÃËÁøÇϱâ À§ÇÑ ¹æ¹ýÀ¸·Î ¼ö¾÷À» ¸Æ¶ôÈ­ÇÏ´Â °ÍÀÌ È¿°ú°¡ ÀÖÀ½À» ³ªÅ¸³»¾úÀ¸¸ç ´õ Æø³ÐÀº Á¶»ç ¿¬±¸¸¦ ÅëÇؼ­ ¼ö¾÷ ¹æ¹ý°ú °úÇÐ ÇнÀ ȯ°æÀÇ ¼³°è¿¡ °í·ÁÇØ¾ß ÇÔÀ» ½Ã»çÇÏ°í ÀÖ´Ù.
----------------------------------------------------------
Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge (p 101-131)
ÇнÀÀ» À§ÇØ ³íÀïÇϱâ¿Í ³íÀïÇÏ´Â ¹æ¹ý ÇнÀÇϱâ : ÇлýµéÀÇ ³íÀïÇϱⰡ ±×µéÀÇ °úÇÐÀû Áö½Ä¿¡ ¾î¶»°Ô °ü·ÃµÇ´ÂÁö¿¡ ´ëÇÑ »ç·Ê¿¬±¸

Claudia von Aufschnaiter, Sibel Erduran, Jonathan Osborne, Shirley Simon

Abstract
In this study we investigated junior high school students' processes of argumentation and cognitive development in science and socioscientific lessons. Detailed studies of the relationship between argumentation and the development of scientific knowledge are rare. Using video and audio documents of small group and classroom discussions, the quality and frequency of students' argumentation was analyzed using a schema based on the work of Toulmin ([1958]). In parallel, students' development and use of scientific knowledge was also investigated, drawing on a schema for determining the content and level of abstraction of students' meaning-making. These two complementary analyses enabled an exploration of their impact on each other. The microanalysis of student discourse showed that: (a) when engaging in argumentation students draw on their prior experiences and knowledge; (b) such activity enables students to consolidate their existing knowledge and elaborate their science understanding at relatively high levels of abstraction. The results also suggest that students can acquire a higher quality of argumentation that consists of well-grounded knowledge with a relatively low level of abstraction. The findings further suggest that the main indicator of whether or not a high quality of argument is likely to be attained is students' familiarity and understanding of the content of the task. The major implication of this work for developing argumentation in the classroom is the need to consider the nature and extent of students' content-specific experiences and knowledge prior to asking them to engage in argumentation.

ÀÌ ¿¬±¸¿¡¼­ ¿ì¸®´Â °úÇаú »çȸ°úÇÐÀû ¼ö¾÷¿¡¼­ ÁßÇб³ ÇлýµéÀÇ ³íÀïÀÇ °úÁ¤°ú ÀÎÁö °³¹ßÀ» Á¶»çÇÏ¿´´Ù. ³íÀï°ú °úÇÐÀû Áö½ÄÀÇ °³¹ß »çÀÌÀÇ °ü·Ã¼º¿¡ ´ëÇÑ »ó¼¼ÇÑ ¿¬±¸´Â µå¹°´Ù. ¼Ò±×·ìÀÇ ±³½Ç ÅäÀÇ¿¡ ´ëÇÑ ºñµð¿À¿Í ¿Àµð¿À ÀÚ·áµéÀ» »ç¿ëÇÏ¿©, ÇлýµéÀÇ ³íÀïÀÇ Áú°ú ºóµµ¸¦ Toulmin ([1958])ÀÇ ¿¬±¸¿¡ ±âÃÊÇÑ ½ºÅ°¸¶¸¦ »ç¿ëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. º´ÇàÇÏ¿©, ÇлýµéÀÇ °úÇÐÀû Áö½ÄÀÇ °³¹ß°ú »ç¿ëµµ Á¶»çÇÏ¿© ÇлýµéÀÌ ¸¸µç ÀǹÌÀÇ ³»¿ë°ú ¼öÁØÀ» °áÁ¤Çϱâ À§Çؼ­ ½ºÅ°¸¶¸¦ »ç¿ëÇÏ¿´´Ù. ÀÌ·¯ÇÑ µÎ °¡ÁöÀÇ º¸¿ÏÀûÀÎ ºÐ¼®Àº ¼­·Î¿¡°Ô ¹ÌÄ£ ¿µÇâÀ» ¼³¸í °¡´ÉÇÏ°Ô ÇÏ¿´´Ù. Çлý ´ãÈ­ÀÇ ¹Ì½ÃÀû ºÐ¼®Àº ´ÙÀ½°ú °°´Ù : (a) ³íÀï¿¡ Âü°¡ÇÏ°í ÀÖÀ» ¶§ ÇлýµéÀº ¼±°æÇè°ú ¼±Áö½ÄÀ» »ç¿ëÇÏ¿´´Ù ; (b) ±×·¯ÇÑ È°µ¿Àº ÇлýµéÀÌ ±×µéÀÇ ÇöÁ¸ÇÏ´Â Áö½ÄÀ» °­È­Çϵµ·Ï ÇÏ¿´À¸¸ç ºñ±³Àû Ã߻󵵰¡ ³ôÀº °úÇÐÀ» ÀÌÇØÇϵµ·Ï ¸¸µé¾ú´Ù. ¿¬±¸ °á°ú´Â ¶ÇÇÑ ÇлýµéÀÌ Ã߻󵵰¡ ºñ±³Àû ³·Àº ¼öÁØÀÇ ±Ù°Å°¡ È®½ÇÇÑ Áö½ÄÀ¸·Î ±¸¼ºµÈ ³íÀï¿¡¼­ º¸´Ù ´õ ³ôÀº ÁúÀ» ¾òÀ» ¼ö ÀÖ´Ù´Â °ÍÀ» Á¦¾ÈÇÑ´Ù. ¹ß°ßÁ¡Àº ³ôÀº ¼öÁØÀÇ ³íÀïÀÌ µÉ °ÍÀÎÁö ¾Æ´ÑÁöÀÇ ÁÖ¿äÇÑ Áö½ÃÀÚ°¡ ÇлýµéÀÇ °úÁ¦ ³»¿ëÀÇ Ä£¼÷ÇÔ°ú ÀÌÇضó´Â °ÍÀ» ¶ÇÇÑ Á¦¾ÈÇÏ°í ÀÖ´Ù. ±³½Ç¿¡¼­ ³íÀïÀ» ¹ßÀü½ÃÅ°±â À§ÇÑ ÀÌ ¿¬±¸ÀÇ ÁÖ¿äÇÑ ½Ã»çÁ¡Àº ±×µé¿¡°Ô ³íÀï¿¡ Âü°¡Çϱ⸦ ¿ä±¸Çϱâ ÀÌÀü¿¡ ÇлýµéÀÇ ³»¿ë-ƯÁ¤ÀûÀÎ °æÇè°ú Áö½ÄÀÇ º»¼º°ú ¹üÀ§¸¦ °í·ÁÇÏ´Â °ÍÀÌ ÇÊ¿äÇÏ´Ù´Â °ÍÀÌ´Ù.
-----------------------------------------------------------
A longitudinal study of junior high school students' conceptions of the structure of materials (p 132-152)
ÁßÇлýµéÀÇ ¹°ÁúÀÇ ±¸Á¶ °³³ä¿¡ ´ëÇÑ Á¾´ÜÀû ¿¬±¸

Hannah Margel, Bat-Sheva Eylon, Zahava Scherz

Abstract
This longitudinal study investigated the progression in junior high school (JHS) students' conceptions of the structure of matter while studying a new instructional approach dealing with Materials. In particular, we studied the progression of students' learning along two dimensions: (a) the conceptual model; and (b) the context of application. Students were asked to draw the structure of several materials and to write their explanations about the structure of these materials in questionnaires administered five times during a 3-year period. Results indicate students' progression in their microscopic conceptualization of materials. Toward the end of the instruction about 85% of the students used a microscopic model in their representations, and 36% were able to give a molecular model. About 83% of the students retained a microscopic model. Different profiles of JHS students' progression in the conception of the structure of matter were identified. The study suggests that a long-term development of the particulate model requires: (a) constructing a solid foundation of knowledge about microscopic structure of materials; and (b) a spiral instruction.

ÀÌ Á¾´ÜÀû ¿¬±¸´Â ÁßÇб³(JHS)¿¡¼­ »õ·Î¿î ¼ö¾÷ ¹æ¹ýÀ¸·Î ¹°Áú¿¡ ´ëÇؼ­ ¹è¿ì´Â µ¿¾È ¹°ÁúÀÇ ±¸Á¶¿¡ ´ëÇÑ Çлý °³³äÀÇ ¹ß´ÞÀ» Á¶»çÇÏ¿´´Ù. Ưº°È÷, ¿ì¸®´Â µÎ °¡Áö Â÷¿øÀ¸·Î Çлý ÇнÀÀÇ Áøº¸¸¦ ¿¬±¸Çß´Ù : (a) °³³ä ¸ðµ¨°ú (b) Àû¿ëÀÇ »óȲ. Çлýµé¿¡°Ô Áú¹®Áö¸¦ ÁÖ°í ¸î °¡Áö ¹°ÁúÀÇ ±¸Á¶¸¦ ±×¸®µµ·Ï ÇÏ¿´À¸¸ç ±×·¯ÇÑ ¹°ÁúµéÀÇ ±¸Á¶¿¡ ´ëÇؼ­ ¼³¸íÀ» ¾²µµ·Ï ¿äûÇß´Ù. ÀÌ·¯ÇÑ Áú¹®Áö´Â 3³â µ¿¾È 5¹ø Á¦°øµÇ¾ú´Ù. ¿¬±¸ °á°ú´Â ¹°Áú¿¡ ´ëÇÑ ¹Ì½ÃÀû °³³äÈ­¿¡¼­ ÇлýµéÀÇ Áøº¸°¡ ³ªÅ¸³µÀ½À» º¸¿©ÁØ´Ù. ¼ö¾÷ÀÇ ¸¶Áö¸·¿¡¼­ ÇлýµéÀÇ ¾à 85%°¡ ±×µéÀÇ º¸°í¼­¿¡¼­ ¹Ì½ÃÀû ¸ðµ¨À» »ç¿ëÇß°í 36%´Â ºÐÀÚ ¸ðµ¨À» »ç¿ëÇß´Ù. ÇлýµéÀÇ ¾à 83%´Â ¹Ì½ÃÀû ¸ðµ¨À» À¯ÁöÇÏ¿´´Ù. ¹°Áú ±¸Á¶ÀÇ °³³ä¿¡¼­ JHS ÇлýµéÀÇ Áøº¸ÀÇ ´Ù¸¥ Ãø¸éµéµµ È®ÀεǾú´Ù. ÀÌ ¿¬±¸´Â Ưº°ÇÑ ¸ðµ¨¿¡ ´ëÇÑ Àå±â°£¿¡ °ÉÄ£ ¹ßÀüÀº ´ÙÀ½À» ¿ä±¸ÇÑ´Ù´Â °ÍÀ» Á¦¾ÈÇÏ°í ÀÖ´Ù : (a) ¹°ÁúÀÇ ¹Ì½ÃÀû ±¸Á¶¿¡ ´ëÇÑ Áö½ÄÀÇ ±âÃʸ¦ È®°íÇÏ°Ô ¸¸µé±â ; ±×¸®°í (b) ³ª¼±Çü ¼ö¾÷.

±è¿ø¼÷, ±è¿µ¹Î
ºÎ»ê´ëÇб³ ¹°¸®±³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò