"°úÇй®È­±³À°"

2005-07-25 (Vol 2, No 7)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 26(12) October, 2004

Conscious knowledge of learning: accessing learning strategies in a final year high school biology class
ÇнÀÀÇ ÀǽÄÀû Áö½Ä(Conscious knowledge): °íµîÇб³ ÃÖ°íÇг⠻ý¹°ÇÐ ¼ö¾÷¿¡¼­ ÇнÀÀü·«¿¡ÀÇ Á¢±Ù

Authors: Lindsey Conner, Christchurch College of Education, New Zealand; e-mail:lindsey.conner@cce.ac.nz; Richard Gunstone, Monash University, Australia

Source: International Journal of Science Education, October 8, 2004, vol. 26, no. 12, pp. 1427-1443(17)

Abstract:
This paper reports on a qualitative case study investigation of the knowledge and use of learning strategies by 16 students in a final year high school biology class to expand their conscious knowledge of learning. Students were provided with opportunities to engage in purposeful inquiry into the biological, social and ethical aspects of cancer. A constructivist approach was implemented to access prior content and procedural knowledge in various ways. Students were encouraged to develop evaluation of their learning skills independently through activities that promoted metacognition. Those students who planned and monitored their work produced essays of higher quality. The value and difficulties of promoting metacognitive approaches in this context are discussed, as well as the idea that metacognitive processes are difficult to research, because they have to be conscious in order to be identified by the learner, thereby making them accessible to the researcher.

ÀÌ ¿¬±¸´Â °íµîÇб³ ÃÖ°íÇгâÀÇ »ý¹°ÇÐ ¼ö¾÷¿¡ Âü°¡ÇÑ 16¸íÀÇ ÇлýµéÀÌ ÇнÀÀÇ ÀǽÄÀû Áö½Ä(conscious knowledge)À» È®Àå½ÃÅ°±â À§ÇÏ¿© ¼öÇàÇÑ Áö½Ä°ú ÇнÀÀü·«ÀÇ »ç¿ë¿¡ ´ëÇÑ ÁúÀûÀÎ »ç·Ê ¿¬±¸ÀÌ´Ù. ÇлýµéÀº ¾ÏÀÇ »ý¹°ÇÐÀû, »çȸÀû, ±×¸®°í µµ´öÀûÀÎ Ãø¸é¿¡ ´ëÇÑ ÀǵµÀûÀΠŽ±¸¿¡ Âü°¡ÇÒ ±âȸ¸¦ Á¦°ø¹Þ¾Ò´Ù. ¿©·¯ °¡Áö ¹æ¹ýÀ¸·Î ÀÌÀüÀÇ ³»¿ë°ú °úÁ¤Àû Áö½Ä¿¡ Á¢±ÙÇϵµ·Ï ±¸¼ºÁÖÀÇÀû Á¢±ÙÀÌ ¼öÇàµÇ¾ú´Ù. ÇлýµéÀº ¸ÞŸÀÎÁö¸¦ ÃËÁøÇÏ´Â È°µ¿À» ÅëÇÏ¿© µ¶¸³ÀûÀ¸·Î ±×µé ÀÚ½ÅÀÇ ÇнÀ ´É·ÂÀ» Æò°¡ÇÏ´Â °ÍÀ» ¹ßÀü½ÃÅ°µµ·Ï °Ý·ÁµÇ¾ú´Ù. ÀÚ½ÅÀÇ ÀÛ¾÷À» °èȹÇÏ°í °üÂûÇß´ø ÇлýµéÀº ³ôÀº ¼öÁØÀÇ ¿¡¼¼À̸¦ ÀÛ¼ºÇÏ¿´´Ù. ÀÌ·± »óȲ¿¡¼­ ¸ÞŸÀÎÁö Á¢±ÙÀ» ÃËÁø½ÃÅ°´Â °ÍÀÇ °¡Ä¡¿Í ¾î·Á¿òÀÌ ³íÀǵȴÙ. ¶ÇÇÑ ¸ÞŸÀÎÁö °úÁ¤Àº ÇнÀÀÚ°¡ ÀÌÇØÇϱâ À§Çؼ­´Â, ´Ù½Ã ¸»ÇØ ±×°ÍµéÀ» ¿¬±¸ÀÚ°¡ ½±°Ô Á¢±ÙÇÏ°Ô ¸¸µé±â À§Çؼ­´Â ÀǽÄÀûÀ̾î¾ß¸¸ Çϱ⠶§¹®¿¡, ¸ÞŸÀÎÁö °úÁ¤Àº ¿¬±¸Çϱ⿡ ¾î·Æ´Ù´Â »ý°¢µµ ³íÀǵȴÙ.
---------------------------------------------------------------------
Exploring the use of concept chains to structure teacher trainees' understanding of science
¿¹ºñ±³»çµéÀÇ °úÇп¡ ´ëÇÑ ÀÌÇظ¦ ±¸Á¶È­Çϱâ À§ÇÑ °³³ä»ç½½(concept chain)ÀÇ »ç¿ë¿¡ ´ëÇÑ Å½»ö

Authors: Janet Machin; Email: janet.machin@northampton.ac.uk; Janet Varleys and Peter Loxley, University College Northampton, UK

Source: International Journal of Science Education, October 8, 2004, vol. 26, no. 12, pp. 1445-1475(31)


Abstract:
This paper reports on a paper and pencil concept-sorting strategy that enables trainee teachers to restructure their knowledge in any one domain of science. It is used as a self-study tool, mainly to enable them to break down and understand the progression of concepts beyond the level at which they have to teach. The strategy involves listing key ideas in an increasingly complex and inclusive fashion such that a 'chain' is developed where the initial statements are simple and the final ones more complex. Evaluation of the strategy with trainees over a five-year period revealed promising potential for the strategy as a self-study tool, as well as an audit tool, enabling tutors to more easily identify misconceptions. There was some evidence that trainees found the strategy useful in preparing themselves to teach in the classroom, possibly by enabling meaningful learning to take place according to the Ausubel-Novak-Gowin theory.

ÀÌ ¿¬±¸´Â ¿¹ºñ±³»çµéÀÌ °úÇÐÀÇ ¾î´À ÇÑ ¿µ¿ª¿¡¼­ ÀÚ½ÅÀÌ ¾Ë°í ÀÖ´Â °ÍÀ» À籸Á¶ÇÏ´Â °ÍÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Á¾ÀÌ ¿¬ÇÊ °³³ä-Á¤·Ä Àü·«(a paper and pencil concept-sorting strategy)¿¡ ´ëÇÑ °ÍÀÌ´Ù. ÀÌ°ÍÀº ÀÚ±âÇнÀµµ±¸·Î¼­ ÀÌ¿ëµÇ´Âµ¥, ÁÖ·Î ±×µéÀÌ °¡¸£Ãľ߸¸ ÇÏ´Â ¼öÁØ ÀÌ»óÀÇ ÀÏ·ÃÀÇ °³³äµéÀ» ±ú°í ÀÌÇØÇÏ´Â °ÍÀ» °¡´ÉÇÏ°Ô ÇÑ´Ù. ¡®»ç½½¡¯Àº ÃʱâÀÇ Áø¼úÀº ´Ü¼øÇÏ°í, ¸¶Áö¸· Áø¼úÀº ´õ¿í º¹ÀâÇϵµ·Ï ¸¸µé¾îÁö´Â »ó´çÈ÷ º¹ÀâÇÏ°í Æ÷°ýÀûÀÎ ¹æ½ÄÀ¸·Î Áß¿äÇÑ °³³äµéÀ» ³ª¿­ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÑ´Ù. 5³â µ¿¾È¿¡ °ÉÃÄ ¿¹ºñ±³»çµé¿¡ ´ëÇÑ ÀÌ Àü·«¿¡ ´ëÇÑ Æò°¡´Â ÀÚ±â-ÇнÀ µµ±¸·Î¼­ÀÇ Àü·«Àº ¹°·Ð, ±³»ç°¡ ´õ¿í ½±°Ô ¿À°³³äÀ» ÀνÄÇÒ ¼ö ÀÖ°Ô ÇØÁÖ´Â °Ë»ç µµ±¸·Î½á ±â´ëµÇ´Â ÀáÀç·ÂÀ» º¸¿©ÁÖ¾ú´Ù. ¿¹ºñ±³»çµéÀº ÀÌ Àü·«ÀÌ ÀÇ¹Ì ÀÖ´Â ÇнÀÀÌ Ausubel-Novak-Gowin À̷п¡ µû¶ó¼­ ÀϾ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ±³½Ç¿¡¼­ °¡¸£Ä¡´Â °ÍÀ» ÁغñÇϴµ¥ À¯¿ëÇÑ Àü·«À̶ó´Â °ÍÀ» ¹ß°ßÇß´Ù´Â Áõ°Å°¡ ÀÖ´Ù.
----------------------------------------------------------------------
Evaluating students' science notebooks as an assessment tool
Æò°¡µµ±¸·Î¼­ ÇлýµéÀÇ °úÇаøÃ¥ Æò°¡Çϱâ

Authors: Maria A. Ruiz-Primo, School of Education, Stanford University, 485 Lasuen Mall, Stanford, CA 94305–-3096, USA; e-mail: aruiz@stanford.edu; Min Li, 312D Miller Hall, College of Education, University of Washington, Seattle, WA 98195, USA; e-mail: minli@u.washington.edu; Carlos Ayala, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA; e-mail: carlos.ayala@sonoma.edu; Richard J. Shavelson, School of Education, Stanford University, 485 Lasuen Mall, Stanford, CA 94305–-3096, USA; e-mail: richs@stanford.edu

Source: International Journal of Science Education, October 8, 2004, vol. 26, no. 12, pp. 1477-1506(30)

Abstract:
The idea of using science notebooks as a classroom assessment tool is not new. There is general agreement that science notebooks allow teachers to assess students' conceptual and procedural understanding and to provide the feedback students need for improving their performance. In this study we examined the use of science notebooks as an unobtrusive assessment tool that can also be used by individuals outside the classroom (for example, school district personnel), and as a means for obtaining information about students' learning and their opportunities to learn. More specifically, in this study students' science notebooks were used as a source of data about the (a) implementation of a curriculum's intended activities, (b) students' performance, and (c) quality of teachers' feedback. Our results indicated that: (1) Students' science notebooks can be reliably scored. Unit implementation, student performance, and teacher feedback scores were highly consistent across raters and units. (2) High and positive correlations with other performance assessment scores indicated that the student performance score can be considered as an achievement indicator. And (3) low performance scores across the two units revealed that students' communication skills and understanding were far away from the maximum score and did not improve over the course of instruction during the school year. This result may be due, in part, to the fact that no teacher feedback was found in any of the students' notebooks across the six classrooms studied. This may reflect some characteristics of the teachers' assessment practices that may require further professional development.

±³½Ç¼ö¾÷ Æò°¡µµ±¸·Î¼­ °úÇÐ °øÃ¥À» »ç¿ëÇÑ´Ù´Â »ý°¢Àº »õ·Î¿î °ÍÀº ¾Æ´Ï´Ù. °úÇÐ °øÃ¥Àº ±³»çµé¿¡°Ô ÇлýµéÀÇ °³³äÀûÀÎ ±×¸®°í °úÁ¤ÀûÀÎ ÀÌÇØ¿¡ ´ëÇؼ­ Æò°¡ÇÏ°Ô ÇÏ°í, ÇлýµéÀÌ ÀÚ½ÅÀÇ ¼ºÃëµµ¸¦ ³ôÀ̱â À§ÇØ ¿ä±¸ÇÏ´Â Çǵå¹éÀ» Á¦½ÃÇÏ°Ô ÇÑ´Ù. ÀÌ ¿¬±¸¿¡¼­ ¿ì¸®´Â ±³½Ç ¹ÛÀÇ °³°³ÀÎ(¿¹·Î Çб³ Áö¿ª À§¿ø(?))¿¡ ÀÇÇصµ »ç¿ëµÉ ¼ö ÀÖ´Â °â¼ÕÇÑ Æò°¡µµ±¸·Î¼­ ±×¸®°í ÇлýµéÀÇ ÇнÀ°ú ¹è¿ì´Â ±âȸ¿¡ ´ëÇÑ Á¤º¸¸¦ ¾ò´Â ¼ö´ÜÀ¸·Î½á °úÇÐ °øÃ¥ÀÇ »ç¿ëÀ» »ìÆ캸¾Ò´Ù. ´õ¿í Ưº°ÇÏ°Ô, ÀÌ ¿¬±¸¿¡¼­ ÇлýµéÀÇ °úÇÐ °øÃ¥Àº (a)±³À°°úÁ¤ÀÇ ÀǵµµÈ È°µ¿ÀÇ ¼öÇà, (b)ÇлýµéÀÇ ¼ºÃëµµ, ±×¸®°í (c)±³»çÀÇ Çǵå¹éÀÇ ¿ì¼ö¼º¿¡ ´ëÇÑ ÀÚ·áÀÇ Ãâó·Î½á »ç¿ëµÇ¾ú´Ù. ¿ì¸®ÀÇ ¿¬±¸´Â ´ÙÀ½°ú °°Àº °ÍµéÀ» ³ªÅ¸³»¾ú´Ù. (1)ÇлýµéÀÇ °úÇÐ °øÃ¥Àº ½Å·ÚÇÒ ¼ö ÀÖÀ» ¸¸Å­ Á¡¼öÈ­µÉ ¼ö ÀÖ´Ù. À¯´Ö ¼öÇà Á¡¼ö, Çлý ¼ºÃëµµ Á¡¼ö, ±×¸®°í ±³»çÀÇ Çǵå¹é Á¡¼ö´Â Æò°¡ÀÚ¿Í ´Ü¿ø¿¡ ´ëÇؼ­ ¾ÆÁÖ ³ô°Ô ÀÏÄ¡ÇÏ¿´´Ù. (2)´Ù¸¥ ¼öÇà(¼ºÃë) Æò°¡ Á¡¼ö¿ÍÀÇ ³ôÀº ¾çÀû »ó°ü°ü°è´Â ÇлýµéÀÇ ¼ºÃëÁ¡¼ö(performance score)´Â ¼ºÃëÁöÇ¥(achievement indicator)·Î½á »ý°¢ÇÒ ¼ö ÀÖ´Ù. (3)µÎ °³ÀÇ À¯´Ö¿¡ ´ëÇÑ ³·Àº Á¡¼ö´Â ÇлýµéÀÇ ÀÇ»ç¼ÒÅë ´É·Â°ú ÀÌÇØ·ÂÀº ¸¸Á¡°ú °Å¸®°¡ »ó´çÈ÷ ¸Ö°í, Çб³¿¡¼­ ¼ö¾÷ ½Ã°£µ¿¾È °³¼±µÇÁö ¾Ê¾ÒÀ½À» ³ªÅ¸³Â´Ù. ÀÌ·± °á°ú´Â ºÎºÐÀûÀ¸·Î´Â ¿¬±¸µÈ 6°³ÀÇ ¹ÝÀÇ ÇлýÀÇ °øÃ¥¿¡¼­ ±³»çÀÇ Çǵå¹éÀÌ Çϳªµµ ¹ß°ßµÇÁö ¾Ê¾Ò´Ù´Â »ç½Ç ¶§¹®ÀÏ ¼öµµ ÀÖ´Ù. ÀÌ°ÍÀº ´õ ¸¹Àº Àü¹®ÀûÀÎ ¹ß´ÞÀ» ¿ä±¸ÇÏ´Â ±³»çÀÇ Æò°¡ ½À°üÀÇ ¾î¶² Ư¼ºÀ» ¹Ý¿µÇÑ´Ù.
----------------------------------------------------------------------
Science teachers as metascientists: an inductive-deductive dialectic immersion in northern alpine field ecology
¸ÞŸ°úÇÐÀڷνáÀÇ °úÇб³»ç: ºÏºÎ ¾ËÆÄÀÎ »ýÅÂÇÐ ÇöÀ忬±¸¿¡ ¡®±Í³³-¿¬¿ª º¯Áõ ÅõÀÔ¡¯

Authors: Larry Bencze, Science Education, Department of Curriculum, Teaching, and Learning, OISE/UT, University of Toronto, Canada; E-mail: lbencze@oise.utoronto.ca; and Leo Elshof, School of Education, Acadia University, Canada

Source: International Journal of Science Education, October 8, 2004, vol. 26, no. 12, pp. 1507-1526(20)

Abstract:
Efforts to promote more realistic conceptions about science are often limited by teachers' inexperience in this domain. In this paper, we describe an 'inductive-deductive, dialectic immersion' approach towards assisting teachers in developing more realistic conceptions about science -- along with corresponding revised perspectives about science teaching. Three secondary teachers of science with minimal science research experience engaged in a case study of science in action -- specifically, in an episode of northern alpine ecological field research. Qualitative data analyzed by constant comparative methods suggested that these teachers shifted along a modernist through postmodernist continuum -- as indicated by increased support for a more Naturalist epistemology of science, a more Antirealist ontology of science, and corresponding priorities towards science teaching and learning. Results suggest that teachers of science can develop postmodern views about science and science teaching if given opportunities to induce and deduce propositions about science in realistic cases of science in action.

°úÇп¡ ´ëÇÑ ´õ¿í ½ÇÁ¦ÀûÀÎ °³³äÀ» ÃËÁøÇÏ·Á´Â ³ë·ÂÀº Á¾Á¾ ±³»çµéÀÇ ±× ºÐ¾ß¿¡¼­ÀÇ ¹Ì°æÇè¿¡ ÀÇÇØ Á¦¾à¹Þ´Â´Ù. ÀÌ ³í¹®¿¡¼­, ¿ì¸®´Â ±³»çµéÀÌ °úÇп¡ ´ëÇÑ ´õ¿í ½ÇÁ¦ÀûÀÎ °³³äÀ» ¹ßÀü½ÃÅ°´Â °ÍÀ» µ½±â À§ÇÑ ¡®±Í³³-¿¬¿ª, º¯Áõ ÅõÀÔ(inductive-deductive dialectic immersion)¡¯ Á¢±ÙÀ» ±â¼úÇÑ´Ù. - (°úÇÐ ±³¼ö¿¡ ´ëÇÑ ´ëÀÀÇÏ´Â °³¼±µÈ °üÁ¡À» µû¶ó¼­) °úÇÐ ¿¬±¸ °æÇèÀÌ ¾ÆÁÖ ÀûÀº ¼¼ ¸íÀÇ Áßµî °úÇÐ ±³»ç°¡ ¼öÇà °úÇÐ(science in action)ÀÇ »ç·Ê¿¬±¸-ƯÈ÷ ºÏºÎ ¾ËÆÄÀÎ »ýÅÂÇÐ ÇöÀå ¿¬±¸-¿¡ Âü¿©ÇÏ¿´´Ù. °è¼ÓÀûºñ±³¹ý(constant comparative method)¿¡ ÀÇÇØ ºÐ¼®ÇÑ ÁúÀû ÀÚ·á¿¡ ÀÇÇϸé ÀÌ·¯ÇÑ ±³»çµéÀº ¸ð´õ´Ï½ºÆ®¿¡¼­ Æ÷½ºÆ®¸ð´õ´Ï½ºÆ®¿¡ À̸£´Â ¿¬¼ÓÀûÀÎ °úÁ¤À» µû¶ó À̵¿ÇÏ°Ô µÈ´Ù. -- °úÇп¡ ´ëÇÑ Á» ´õ ÀÚ¿¬ÀûÀÎ Àνķаú Á» ´õ ºñÇö½ÇÀûÀÎ Á¸Àç·Ð¿¡ ´ëÇÑ ÁöÁö°¡ Áõ°¡ÇÏ´Â °Í°ú °úÇÐÀ» ±³¼öÇÏ°í ÇнÀÇÏ´Â µ¥ ÀÖ¾î ÀÌ·¯ÇÑ ¼ºÇâÀÌ ¿ì¼±½Ã µÇ´Â ¸ð½À¿¡¼­ ³ªÅ¸³ªµíÀÌ--. ¿¬±¸ °á°ú´Â ¼öÇà°úÇÐ(science in action)ÀÇ ½ÇÁ¦ÀûÀÎ °æ¿ì¿¡¼­ °úÇп¡ ´ëÇÑ ¸íÁ¦µéÀ» ±Í³³ÇÏ°í ¿¬¿ªÀ» ÇØ¾ß ÇÏ´Â °æ¿ì, °úÇÐ ±³»ç°¡ °úÇаú °úÇÐ ±³À°¿¡ À־ Æ÷½ºÆ®¸ð³Ê´ÏÁòÀûÀÎ ½Ã°¢À» °³¹ßÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù.
----------------------------------------------------------------------
Views of elementary and middle school Turkish students toward environmental issues
ÅÍÅ° ÃÊÁßµîÇлýµéÀÇ È¯°æ ÀïÁ¡¿¡ ´ëÇÑ °ßÇØ

Authors: Ozgul Yilmaz, Department of Elementary Education, School of Education, Middle East Technical University, Ankara, 06531, Turkey; e-mail;
oyilmaz@indiana.edu; William J. Boone; e-mail: wboone@indiana.edu; and Hans O. Andersen, Science and Environmental Education, School of Education, Indiana University, Bloomington, IN 47405–-1006, USA; e-mail: andersen@indiana.edu

Source: International Journal of Science Education, October 8, 2004, vol. 26, no. 12, pp. 1527-1546(20)

Abstract:
This study was conducted in order to identify the intensity of Turkish students' views with regard to environmental issues presented in the national curriculum and to determine how these views differ by gender, grade level, previous science achievement, socio-economic status (SES), and school location. For this project, a 51-item Attitude Toward Environmental Issues Scale (ATEIS) was created and utilized. In total, the scale involved 30 distinct environmental issues. These environmental issues are emphasized in the current Turkish science education curriculum. A total of 458 students in grade 4-8 classrooms completed the scale. Rasch analysis results indicated that, in general, the students felt environmental problems should be confronted in Turkey. But when students were presented with a range of survey items stating that a particular environmental issue should take precedence over economic growth, it was often very difficult for students to agree. On the other hand, when students were simply presented a range of survey issues concerning environmental problems in Turkey, it was easy for them to agree with the presence (or importance) of these environmental issues in Turkey. Subsequent analysis suggested that the set of ATEIS survey items were understood and functioned in a similar measurement manner for male and female students, as well as elementary and middle school students. Results of ANOVA analyses indicated that recent high achievement in science courses resulted in more positive attitudes toward environmental issues. T-test analyses revealed that the older female students of this data set exhibited more support for environmental issues than did male students. Students with high family income, and those students living in urban areas, displayed more positive attitudes toward environmental issues than did students with low family income, and those living in suburban areas.

ÀÌ ¿¬±¸´Â ±¹°¡ ±³À°°úÁ¤¿¡ ³ªÅ¸³­ ȯ°æÀû ÀïÁ¡¿¡ ´ëÇÑ ÅÍÅ° ÇлýµéÀÇ °ßÇØÀÇ °­µµ¸¦ ¾Ë¾Æº¸°í, ÀÌ·¯ÇÑ °ßÇصéÀÌ ¼º, Çгâ, °úÇÐ ¼ºÃëµµ, »çȸ °æÁ¦Àû À§Ä¡, ±×¸®°í Çб³ÀÇ À§Ä¡¿¡ µû¶ó¼­ ¾î¶»°Ô ´Ù¸¥Áö¸¦ ¾Ë¾Æº¸±â À§ÇÏ¿© ¼öÇàµÇ¾ú´Ù. ÀÌ ¿¬±¸¸¦ À§Çؼ­ 51°³ÀÇ È¯°æÀû ÀïÁ¡¿¡ ´ëÇÑ Åµµ°Ë»çµµ±¸(ATEIS)¸¦ ¸¸µé¾î »ç¿ëÇÏ¿´´Ù. ÀüüÀûÀ¸·Î °Ë»ç´Â 30°³ÀÇ ´Ù¸¥ ȯ°æ Àû ÀïÁ¡À» Æ÷ÇÔÇÏ¿´´Ù. ÀÌ·¯ÇÑ È¯°æÀûÀÎ ÀïÁ¡µéÀº ÇöÀç ÅÍÅ° °úÇÐ ±³À°°úÁ¤¿¡¼­ °­Á¶µÇ°í ÀÖ´Ù. 4-8Çгâ 458¸íÀÌ ÀÌ °Ë»ç¿¡ Âü¿©ÇÏ¿´´Ù. ¶ó½¬(Rasch)ºÐ¼® °á°ú´Â ÀϹÝÀûÀ¸·Î ÇлýµéÀº ÅÍÅ°¿¡¼­ ȯ°æÀûÀÎ ÀïÁ¡µéÀÌ ´ç¸éµÇ¾î¾ß ÇÑ´Ù°í ´À²¼´Ù°í ³ªÅ¸³»¾ú´Ù. ±×·¯³ª Çлýµé¿¡°Ô ƯÁ¤ÇÑ È¯°æÀûÀÎ ÀïÁ¡ÀÌ °æÁ¦ÀûÀÎ ¹ßÀü¿¡ ¼±ÇàµÇ¾î¾ß ÇÑ´Ù´Â °ÍÀ» ÁöÀûÇÏ´Â ¿©·¯ Á¶»ç Ç׸ñÀ» Á¦½ÃÇÏ¿´À» ¶§, ÇлýµéÀÌ µ¿ÀÇÇϱ⿡´Â Á¾Á¾ ¸Å¿ì ¾î·Á¿ü´Ù. ¹Ý¸é¿¡, Çлýµé¿¡°Ô ÅÍÅ°¿¡¼­ÀÇ È¯°æÀûÀÎ ¹®Á¦Á¡¿¡ °ü·ÃµÈ Á¶»ç ÀïÁ¡µéÀ» ´Ü¼øÈ÷ Á¦½ÃÇÏ¿´À» ¶§¿¡´Â ±×µéÀÌ ÅÍÅ°¿¡¼­ÀÇ ÀÌ·¯ÇÑ È¯°æÀûÀÎ ÀïÁ¡µéÀÇ Á¸Àç(¶Ç´Â Á߿伺)¿¡ µ¿ÀÇÇÏ´Â °ÍÀº ½¬¿ü´Ù.
¿¬ÀÌÀº ºÐ¼®Àº, ATEIS Á¶»ç Ç׸ñµéÀÇ ¸ðµëÀÌ ÃʵîÇб³¿Í ÁßÇб³»Ó¸¸ ¾Æ´Ï¶ó ³²Çлý°ú ¿©Çлý¿¡ ´ëÇØ ºñ½ÁÇÑ ÃøÁ¤¹æ½ÄÀ¸·Î ÀÌÇØµÉ ¼ö ÀÖ°í ÀÛ¿ëµÉ ¼ö ÀÖÀ½À» º¸¿©ÁÖ¾ú´Ù. ANOVA ºÐ¼®°á°ú´Â °úÇмö¾÷¿¡¼­ÀÇ ³ôÀº ¼ºÃë´Â ȯ°æÀûÀÎ ÀïÁ¡¿¡ ´ëÇÑ Á» ´õ ±àÁ¤ÀûÀΠŵµ·Î À̾îÁüÀ» º¸¿©ÁØ´Ù. T-test ºÐ¼®Àº ÀÌ µ¥ÀÌÅÍ¿¡¼­ ³ªÀÌ°¡ ¸¹Àº ¿©ÇлýÀÌ ³²Çлýº¸´Ù ȯ°æÀû ÀïÁ¡¿¡ ´ëÇÑ Á» ´õ ¸¹Àº ÁöÁö¸¦ ³ªÅ¸³¿À» º¸¿©ÁØ´Ù. °í¼ÒµæÃþ Çлýµé°ú µµ½Ã¿¡ »ç´Â ÇлýµéÀº Àú¼ÒµæÃþ Çлýµé°ú ¿Ü°û¿¡ »ç´Â Çлýµéº¸´Ù ȯ°æÀû ÀïÁ¡µé¿¡ ´ëÇÑ Á» ´õ ±àÁ¤ÀûÀΠŵµ¸¦ ³ªÅ¸³Â´Ù.

À̺À¿ì

(ÀÌÁ¦ ºÎÅÍ´Â °¡´ÉÇÑ ´ë·Î Áö³­ È£(back number)ÀÇ ³í¹® ¿ä¾àÀ» ¿Ã¸®°Ú½À´Ï´Ù.
±Ý¹ø¿¡´Â ÀÌ ºÀ¿ì ¹Ú»ç°¡ ¼ö°í ÇÏ¿´½À´Ï´Ù. ÇÔ²² ¼ö°í ÇØ ÁÖ½Ç ºÐÀº ÆíÁý ¸Ó½¿¿¡°Ô ¿¬¶ô Áֽñ⠹ٶø´Ï´Ù.)

°úÇй®È­±³À°¿¬±¸¼Ò