"°úÇй®È­±³À°"

2006-01-25 (Vol 3, No 1)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 27(13) 2005

¿¬±¸ º¸°í¼­

Judith Bennett A1, Cornelia Gräsel A2, Ilka Parchmann A3, David Waddington A1
A1;University of York, UK
A2;Universitaet Wuppertal, Germany
A3;Institut von Pedagogik der Naturwissenschaften (IPN), Kiel, Germany

ÀÌ ¿¬±¸´Â »óȲ¿¡ ±âÃÊÇÑ È­ÇÐ ±³À°°úÁ¤(¼ÖÅͽº °í±Þ È­ÇÐ: Salters Advanced Chemistry: SAC)À» °¡¸£Ä¡´Â ±³»çÀÇ °æÇèÀ» ÀüÅëÀûÀÎ ±³À°°úÁ¤À» °¡¸£Ä¡´Â ±³»çÀÇ °æ¿ì¿Í ºñ±³ÇÏ¿© Ž»öÇÑ´Ù. ±×¸®°í »óȲ¿¡ ±âÃÊÇÑ È­ÇÐ ±³À°°úÁ¤À» µµÀÔÇÒÁö ¿©ºÎ¸¦ °áÁ¤ÇÒ ¶§ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î º¸ÀÌ´Â ÁÖµÈ ¿äÀεéÀ» Á¶»çÇÏ¿´´Ù. »óȲ¿¡ ±âÃÊÇÑ È­ÇÐ ±³À°°úÁ¤°ú ÀüÅëÀûÀÎ »ïÈ­ È­ÇÐ °úÁ¤¿¡ ´ëÇÏ¿©, ±³»ç 222¸íÀÇ °üÁ¡À» Áú¹®Áö·Î Á¶»çÇÏ¿´´Ù. ÀÀ´ä ³»¿ëÀº ´ÙÀ½ÀÇ 6°³ÀÇ Â÷¿øÀ¸·Î ºÐ¼®µÇ¾ú´Ù: µ¿±âÈ­, È­ÇÐ Áö½Ä°ú °³³äÀÇ Àü°³, ÇнÀ È°µ¿, Æò°¡, ±³»ç¿Í Çлý¿¡°Ô ÁÖ´Â µµÀü°¨, ±³»ç¿¡ ´ëÇÑ Áö¿ø. µÎ Áý´ÜÀÇ ±³»çµéÀº ¸ðµÎ SAC°¡ ´õ ¹è¿ì°Å³ª °¡¸£Ä¡°í ½Í°Ô µ¿±âÈ­ÇÏ°í, ÇлýµéÀÌ ´õ È­Çп¡ Èï¹Ì¸¦ °¡Áö°í ´ëÇп¡¼­ È­ÇÐÀ» Àü°øÇϵµ·Ï ¸¸µé¸ç, ÇлýµéÀÌ ´õ ½º½º·Î °øºÎÇÒ ¼ö ÀÖ°Ô ÇÏÁö¸¸, °¡¸£Ä¡°Å³ª °øºÎÇϱâ´Â ½±Áö ¾Ê´Ù°í µ¿ÀÇÇÏ¿´´Ù. µÎ Áý´ÜÀº °³³ä Àü°³¿Í ±³¼ö Àü·«¿¡¼­ Å©°Ô Â÷À̳µ´Ù. SAC ±³»ç´Â ÀÌ ±³À°°úÁ¤ÀÌ ÀüÅëÀûÀÎ °úÁ¤¸¸Å­ ½ÉÈ­ ÇнÀ¿¡ ±â¹ÝÀ» Àß Á¦°øÇÏ°í, ³ª¼±Çü ±³À°°úÁ¤ÀÌ ÀåÁ¡ÀÌ ÀÖ´Ù°í ¹Ï¾ú´Ù. ÀüÅëÀûÀÎ ±³À°°úÁ¤À» °¡¸£Ä£ ±³»ç´Â ÀÌ µÎ Áø¼ú¹®¿¡ µ¿ÀÇÇÏÁö ¾Ê¾Ò´Ù. ÀÌ ¿¬±¸¿¡¼­ µå·¯³­ Áß¿äÇÑ ½Ã»çÁ¡Àº ÇöÁ÷ ±³»ç Áö¿øÀÌ ±³À°°úÁ¤ °³Çõ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â ¿ªÇÒÀ» ÇÑ´Ù´Â °ÍÀÌ´Ù.
The study explores teachers¡¯ experiences of teaching a context based chemistry course, Salters Advanced Chemistry, as compared with teachers of a conventional course. Second, main factors that appear to influence decisions over whether or not to adopt context based courses are investigated. Two hundred and twenty two teachers¡¯ views of a context based and a conventional school advanced chemistry course were obtained from a questionnaire. Responses were analysed in six dimensions: motivation, chemical knowledge and development of concepts, learning activities, assessment, challenge to teachers and students, and teacher support. Both sets of teachers agreed that the context based course is more motivating to study and teach, that students would be more interested in chemistry and more likely to go to university to study chemistry, that students would be better able to study independently but that it is more demanding to teach and study. The groups differed principally about concept development and teaching strategy. The context based teachers believed that their course gave as good a foundation for further study as a traditional course and that the spiral curriculum was advantageous. Conventional course teachers disagreed with both statements. One significant implication to emerge from the study is the crucial role played by in service support in influencing the impact of a curriculum innovation.
------------------------------------------------------------------
´ë¸¸ ¿¹ºñ±³»ç 1Çгâ-±×µéÀº ¸¸Á·ÇÒ Á¤µµ·Î °úÇÐÀû ¼Ò¾çÀ̳ª °úÇп¡ ´ëÇÑ Åµµ¸¦ °¡Áö°í ´ëÇп¡ ÀÔÇÐÇϴ°¡?
First year Pre service Teachers in Taiwan; Do they enter the teacher program with satisfactory scientific literacy and attitudes toward science?

Chi Chin Chin A1
A1;National Taichung Teachers College, Taiwan

°úÇÐÀû ¼Ò¾ç°ú °úÇп¡ ´ëÇÑ Åµµ´Â ÀÏ»ó »ýÈ°¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ´ë¸¸ÀÇ ¿¹ºñ±³»ç 1Çгâ ÇлýµéÀÌ ¸¸Á·ÇÒ ¸¸ÇÑ ¼öÁØÀÇ °úÇÐÀû ¼Ò¾çÀ» °¡Áö°í ÀÖ´ÂÁö Á¶»çÇÏ´Â °ÍÀÌ´Ù. ÀÌ ¿¬±¸¿¡¼­ ¼±Á¤ÇÑ °úÇÐÀû ¼Ò¾ç ¹üÁÖ´Â 1) °úÇÐ ³»¿ë, 2) °úÇÐ, ±â¼ú, »çȸÀÇ »óÈ£ÀÛ¿ë, 3) °úÇÐÀÇ º»¼º, 4) °úÇп¡ ´ëÇÑ ÅµµÀÌ´Ù. ±âÃÊ°úÇÐ ¼Ò¾ç°Ë»ç(TBSL)¿Í °úÇаü·Ã ŵµ °Ë»ç(TOSRA)¸¦ Áß±¹¾î·Î ¹ø¿ªÇÏ¿© »ç¿ëÇÏ¿´´Ù. 4°³ÀÇ ´ëÇп¡¼­ ÃʵÀ° Àü°ø(141¸í)°ú °úÇб³À° Àü°ø(138¸í) ÇлýµéÀÌ ¼³¹®Áö¿¡ ÀÀ´äÇß´Ù. °Ë»ç Åë°è °á°ú, ÀϹÝÀûÀ¸·Î, ¿¹ºñ±³»ç 1ÇгâÀÇ °úÇÐÀû ¼Ò¾çÀº ¸¸Á·ÇÒ ¸¸ÇÑ ¼öÁØÀ̾ú´Ù. 6°³ÀÇ ¿µ¿ª Áß ¿¹ºñ±³»çµéÀº °Ç°­ °úÇÐ, STS, »ý¸í °úÇп¡¼­ ³ôÀº ¼Ò¾çÀ» ³ªÅ¸³Â´Ù. °úÇÐÀÇ º»¼º°ú Áö±¸°úÇÐ ºÐ¾ß¿¡¼­ÀÇ ¼Ò¾çÀÌ °¡Àå ³·¾Ò´Ù. ¶ÇÇÑ °úÇб³À° Àü°øÀÌ ¹°¸®ÇÐ, »ý¸í °úÇÐ, °úÇÐÀÇ º»¼º, °úÇÐ ³»¿ë, TBSL¿¡¼­ Ãʵî°úÇÐ Àü°øº¸´Ù ³ô¾Ò´Ù. ³²ÇлýÀº ¿©Çлýº¸´Ù Áö±¸°úÇÐ, »ý¸í °úÇÐ, °úÇÐ ³»¿ë, TBSLÀÌ ³ô¾Ò´Ù. ±×¸®°í ÃʵÀ° Àü°øÀº °úÇб³À° Àü°øº¸´Ù ¡®¸ð¸£°Ú´Ù¡¯¶ó´Â ÀÀ´äÀ» ´õ ¸¹ÀÌ ÇÏ¿´´Ù. ÀϹÝÀûÀ¸·Î ¿¹ºñ±³»çµéÀº °úÇп¡ ´ëÇÑ Åµµ°¡ ´Ù¼Ò ±àÁ¤ÀûÀ̾úÀ¸¸ç, °úÇб³À° Àü°øÀÚµéÀÌ °úÇп¡ ´ëÇÑ Åµµ°¡ Á» ´õ ±àÁ¤ÀûÀ̾ú´Ù. ŵµ¿¡ ÀÖ¾î ¼ºº° Â÷ÀÌ´Â ¾ø¾ú´Ù. ´Ü°èÀû ȸ±Í ºÐ¼® °á°ú STS, °úÇÐÀÇ º»¼º, °úÇп¡ ´ëÇÑ Åµµ°¡ ÃʵÀ° Àü°ø°ú °úÇб³À° Àü°øÀÇ °úÇÐ ³»¿ë º¯·®ÀÇ 50.6%, 60.2%¸¦ °¢°¢ ¼³¸íÇÏ¿´´Ù. °úÇб³À° Àü°ø¿¡¼­´Â óÀ½ÀÇ ¼¼ ¹üÁÖ(°úÇÐÀÇ º»¼º, °Ç°­ °úÇÐ, ¹°¸®ÇÐ)°¡ ±âÃÊ °úÇÐ ¼Ò¾çÀ» °áÁ¤Áö¾ú´Ù. ±×·¯³ª ÃÊµî ±³À° Àü°ø¿¡¼­´Â °¡Àå ³ôÀº ¼¼ ¿äÀÎÀº ¹°¸®ÇÐ, »ý¸í °úÇÐ, °úÇÐÀÇ º»¼ºÀ̾ú´Ù. ÀÌ·¯ÇÑ °á°ú¿¡ ±âÃÊÇÏ¿© °úÇÐ ±³»çÀÇ Àü¹®Àû ´É·ÂÀ» °³¹ßÇϱâ À§ÇÑ ¸î °¡Áö Àü·«À» ¿¹ºñ±³»ç ±³À° ÇÁ·Î±×·¥¿¡ Æ÷ÇÔÇÒ °ÍÀ» Á¦¾ÈÇÏ¿´´Ù.
Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first year pre service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers¡¯ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first year pre‐service teachers was at a satisfactory level. Of the six scales covered in this study, the pre service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more ¡°don¡¯t know¡± responses than science education majors. In general, the pre service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre‐service programs.
--------------------------------------------------------------------
ÀÏ¹Ý ¾çÀÚ¿ªÇÐ ÇнÀ: °¨°¢Àû °æÇè°ú Á¤½Å¸ðÇü
Learning Introductory Quantum Physics: Sensori motor experiences and mental models

Jiun Liang Ke A1, Martin Monk A2, Richard Duschl A3
National Kaohsiung Normal University, Taiwan
Gatsby Charitable Trust, UK
Rutgers University, USA

ÀÌ ³í¹®Àº ´ë¸¸ ¹°¸®ÇÐ ÇлýµéÀÌ ¿øÀÚ ³»ºÎ¿¡¼­ ÀϾ´Â Çö»óÀ» ¾çÀÚ ¿ªÇÐÀ¸·Î ¼³¸íÇÏ´Â °ÍÀ» ¾î¶»°Ô ÀÌÇØÇÏ°í ÀÖ´ÂÁö Á¶»çÇÑ ´Ü¸éÀû ¿¬±¸¸¦ º¸°íÇÑ´Ù. ¼³¹®ÁöÀÇ ¹®Ç׿¡ ÇлýµéÀÌ ´äÀ» ÇÏ°í ¼³¸íÀ» ÇÑ °ÍÀ» ÅëÇØ ÇлýµéÀÇ »ç°í¿¡ Á¢±ÙÇÏ¿´´Ù. ÇлýµéÀÇ ¼³¸íÀÌ ¼­·Î ´Ù¸¥ °ÍÀº ÇлýµéÀÌ ´Ù¸¥ °³³äÀ» ¿¬°áÇÏ´Â ¹æ½ÄÀÌ ¹ß´ÞÇÑ Á¤µµ°¡ ´Ù¸¥ °ÍÀ¸·Î ³íÀǵǾú´Ù. ÇлýµéÀÇ »ý°¢ÀÇ ±Ù¿øÀº °¨°¢-°æÇè¿¡¼­ À¯¹ßµÇ´Â Á¤½Å¸ðÇüÀ» ½ºÅ°¸¶°¡ Æ÷ÇÔÇÏ´Â ¹æ½ÄÀ» º¸¿©ÁØ´Ù. ÇлýµéÀ» °¡¸£Ä¥ ¶§ ¼±Çà Çö»óÀÇ ¹üÀ§¿¡ ´ëÇÏ¿© ½ÇÁ¦ÀûÀÎ È°µ¿À» Æ÷ÇÔÇÏ¿© ÇлýµéÀÇ Á¤½Å¸ðÇü ·¹ÆÄÅ丮¸¦ È®ÀåÇϵµ·Ï ÇÏ´Â °ÍÀÌ ÁÁ´Ù°í °­ÇÏ°Ô Á¦¾ÈÇÑ´Ù. ÀÌ·¯ÇÑ Á¦¾ÈÀº ÀÌÀü ¿¬±¸µé¿¡¼­ Çß´ø °Íµé°ú´Â ´Ù¸¥´Ù.
This paper reports a cross-sectional study of Taiwanese physics students¡¯ understanding of subatomic phenomena that are explained by quantum mechanics. The study uses students¡¯ explanations of their answers to items in a questionnaire as a proxy for students¡¯ thinking. The variation in students¡¯ explanations is discussed as is the development in the way in which students link different concepts. A discussion of the source of students¡¯ ideas turns to the way schema contain mental models that derive from sensori-experiences. The principal recommendation for teaching is the need to include practical activities on a range of precursor phenomena so as to extend the students repertoires of mental models. This advice is different from that given in previous studies.
----------------------------------------------------------------------
°íÂ÷¿øÀû »ç°í¸¦ °¡¸£Ä¡´Â »óȲ¿¡¼­ ±³»çÀÇ ±³À°Àû Áö½Ä Æò°¡
Assessing Teachers¡¯ Pedagogical Knowledge in the Context of Teaching Higher order Thinking

Anat Zohar A1 and Noa Schwartzer A1
A1-Hebrew University, Israel

ÀÌ ³í¹®Àº °íÂ÷¿øÀû »ç°í¸¦ °¡¸£Ä¡´Â »óȲ¿¡¼­ ±³»çÀÇ ±³À°Àû Áö½ÄÀ» Æò°¡ÇÏ´Â µµ±¸ 2°³(¸®Ä¿Æ® ÇüÅÂÀÇ ¿¬±¸ µµ±¸¿Í ±³½Ç °üÂûÀ» ºÐ¼®ÇÏ´Â µµ±¸)¸¦ °³¹ßÇÏ°í Àû¿ëÇÑ °ÍÀ» º¸°íÇÑ´Ù. ÀÌµé µµ±¸¿Í ÁÖµÈ ¹üÁÖ¸¦ °³¹ßÇÏ´Â ³í¸®Àû ±Ù°Å¸¦ ±â¼úÇÏ¿´´Ù. 150¸íÀÇ À̽º¶ó¿¤ ±³»ç°¡ ¼³¹®Áö¿¡ ÀÀ´äÇÏ¿´´Ù. ¿¬±¸ °á°ú »ý¹° ±³»ç°¡ ¹°¸®³ª È­ÇÐ ±³»çº¸´Ù Åë°èÀûÀ¸·Î À¯ÀǹÌÇÏ°Ô Á¡¼ö°¡ ³ô¾Ò°í, ÁßÇб³ ±³»ç°¡ °íµîÇб³ ±³»çº¸´Ù À¯ÀǹÌÇÏ°Ô ³ôÀº Á¡¼ö¸¦ ¹Þ¾Ò°í, ÃÖÁ¾ Á¡¼ö¿Í ±³»ç °æ·Â »çÀÌ¿¡´Â À¯ÀǹÌÇÑ ºÎÀû »ó°üÀÌ ÀÖ¾ú´Ù. ±³½Ç °üÂû ¿¬±¸¿¡ Âü¿©ÇÑ ±³»ç´Â °íÂ÷¿øÀû »ç°í ±³¼ö¿¡ ´ëÇÑ 1³â°£ÀÇ Àü¹® °³¹ß °úÁ¤¿¡ ´Ù´Ï´Â ±³»ç 14¸íÀ̾ú´Ù. ÀÌ µµ±¸´Â ´ÙÀ½ ¸î °³ÀÇ ¿µ¿ª¿¡¼­ ±³»çÀÇ ±³À°Àû Áö½Ä º¯È­¸¦ ¹Î°¨ÇÏ°Ô °¨ÁöÇØ ³»¾ú´Ù; °íÂ÷¿øÀû »ç°í¸¦ ¿ä±¸ÇÏ´Â °úÁ¦ÀÇ ºóµµ, ±³»ç°¡ ¼ö¾÷ Áß¿¡ Á¦½ÃÇÏ´Â »ç°í Àü·«ÀÇ ´Ù¾ç¼º, ÇлýµéÀÌ ¸ÞŸÀÎÁöÀû »ç°í¿¡ Âü¿©ÇÏ´Â Á¤µµ; ¼ö¾÷¿¡¼­ ¡®»ç°íÀÇ ¾ð¾î¡¯ »ç¿ë µî. ¿¬±¸ °á°ú ¿¬±¸¿Í ½ÇÁ¦¿¡ ¹ÌÄ¡´Â ½Ã»çÁ¡À» ³íÀÇÇÏ¿´´Ù.
This article reports the development and application of two instruments for assessing science teachers¡¯ pedagogical knowledge in the context of teaching higher‐order thinking: a Likert-type research instrument, and an instrument that analyzes classroom observations. The rationale for developing these instruments and their main categories is described. One hundred and fifty Israeli science teachers replied to the Likert-type questionnaire. Results show that biology teachers gained a significantly higher score than either physics or chemistry teachers, that junior high school teachers scored significantly higher than high school teachers, and that a significant negative correlation was found between final scores and teaching experience. Participants in the classroom observation study were 14 teachers who attended a one year professional development course for teaching higher-order thinking. The instrument was sensitive in detecting progress in teachers¡¯ pedagogical knowledge in several categories, such as: Frequency of tasks that required higher-order thinking; The variety of thinking strategies that teachers addressed during their lessons; Engagement of students in metacognitive thinking; and Using the ¡°language of thinking¡± in class. The implications of the findings for research and practice are described.
----------------------------------------------------------------------
ÇлýµéÀÇ °úÇп¡ ´ëÇÑ ÀνķÐÀû °üÁ¡À» ÃøÁ¤ÇÏ´Â ´ÙÂ÷¿øÀû µµ±¸ °³¹ß
Developing a Multi-dimensional Instrument for Assessing Students¡¯ Epistemological Views toward Science

Chin-Chung Tsai A1 and Shiang-Yao Liu A2
A1-National Chiao Tung University, Taiwan
A2-National Kaohsiung Normal University, Taiwan

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº °íµîÇлýµéÀÌ °¡Áö°í ÀÖ´Â °úÇп¡ ´ëÇÑ ÀνķÐÀû °üÁ¡(SEVs)ÀÇ ´Ù¾çÇÑ Â÷¿øÀ» È®ÀÎÇÒ ¼ö ÀÖ´Â °Ë»ç µµ±¸¸¦ °³¹ßÇÏ°í Ÿ´çÈ­ÇÑ °ÍÀ» ±â¼úÇÏ´Â °ÍÀÌ´Ù. ÀÌ µµ±¸´Â ´ÙÀ½ÀÇ 5°³ÀÇ SEVs Â÷¿øÀ» °¡Áø´Ù: °úÇп¡¼­ »çȸÀû Çù»óÀÇ ¿ªÇÒ, °úÇÐÀÇ °í¾ÈÀûÀÌ¸ç ¹ß¸íÀû ½Ç»ó, °úÇп¡¼­ À̷п¡ ÀÇÁ¸ÇÑ Å½±¸, ¹®È­°¡ °úÇп¡ ¹ÌÄ¡´Â ¿µÇâ, °úÇÐÀÇ °¡º¯Àû Ư¼º. ´ë¸¸ °íµîÇлý 630¸íÀÌ µµ±¸¿¡ ÀÀ´äÇß´Ù. ÀÚ·á ºÐ¼® °á°ú ÀÌ ¿¬±¸¿¡¼­ °³¹ßµÈ µµ±¸ÀÇ Å¸´çµµ¿Í ½Å·Úµµ´Â ¸¸Á·ÇÒ ¸¸ÇÑ ¼öÁØÀ̾ú´Ù. »ó°ü ºÐ¼®°ú ½ÉÃþ ¸é´ãÀº ÇлýµéÀÇ SEVs¸¦ ³ªÅ¸³¾ ¶§ ´Ù¾çÇÑ Â÷¿øÀ» »ç¿ëÇÏ´Â °ÍÀÌ ÀûÀýÇÔÀ» ÁöÀûÇØ ÁÖ¾ú´Ù. ¸î¸î Â÷¿ø¿¡ ´ëÇØ ³²³à Â÷ÀÌ, Çлý°ú ±³»ç ÀÀ´ä Â÷ÀÌ°¡ Åë°èÀûÀ¸·Î À¯ÀǹÌÇÏ°Ô ³ªÅ¸³µ´Ù. SEVs¿Í °úÇÐ ÇнÀ »çÀÌÀÇ º¹ÀâÇÑ »óÈ£ÀÛ¿ëÀ» Á¶»çÇÒ ¶§, °úÇÐ ¼ö¾÷À» Æò°¡ÇÒ ¶§, °úÇп¡ ´ëÇÑ ÀνķÐÀû °üÁ¡ÀÇ ¹®È­ÀûÀÎ Â÷À̸¦ ÀÌÇØÇÒ ¶§ ÀÌ µµ±¸¸¦ »ç¿ëÇÒ °ÍÀ» Á¦¾ÈÇÏ¿´´Ù.
The purpose of this study was to describe the development and validation of an instrument to identify various dimensions of scientific epistemological views (SEVs) held by high school students. The instrument included five SEV dimensions (subscales): the role of social negotiation on science, the invented and creative reality of science, the theory-laden exploration of science, the cultural impacts on science, and the changing features of science. Six hundred and thirteen high school students in Taiwan responded to the instrument. Data analysis indicated that the instrument developed in this study had satisfactory validity and reliability measures. Correlation analysis and in-depth interviews supported the legitimacy of using multiple dimensions in representing student SEVs. Significant differences were found between male and female students, and between students¡¯ and their teachers¡¯ responses on some SEV dimensions. Suggestions were made about the use of the instrument to examine complicated interplays between SEVs and science learning, to evaluate science instruction, and to understand the cultural differences in epistemological views of science.

÷ºÎ
IJSE27(13).hwp

ÇÑÀ翵(ÃæºÏ´ëÇб³)

°úÇй®È­±³À°¿¬±¸¼Ò