"°úÇй®È­±³À°"

2006-02-25 (Vol 3, No 2)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 27(14) 2005

¹°¸®ÇÐ ¼ö¾÷°ú ¸¸È­: Áßµî ±³À°¿¡¼­ ¼­·Î ¿¬°áµÉ ¼ö ÀÖÀ»±î?
The Teaching of Physics and Cartoons: Can they be interrelated in secondary education?

1Universidad de Granada, Spain
2Sección del I.E.S., Alquife, Spain

û¼Ò³âµéÀÇ ÀÏ»ó »ýÈ°¿¡ Çб³°¡ ¹ÌÄ¡´Â ¿µÇâ·ÂÀ» Á¡Â÷ÀûÀ¸·Î TV¿¡ »©¾Ñ±â°í ÀÖ´Â »óȲ¿¡¼­, ÀÌ ³í¹®Àº Áßµî ¹°¸® ±³À°°úÁ¤¿¡ ¸¸È­¸¦ Æ÷ÇÔÇÏ´Â °úÁ¤°ú °á°ú¸¦ ±â¼úÇÑ´Ù. ÁÖ·Î ¼ÒÁý´Ü Çлýµé°ú ÀÛ¾÷À» ÇÏ¿´°í, ´ë±Ô¸ð Áý´Ü¿¡¼­´Â °£ÇæÀûÀ¸·Î ÀÛ¾÷ÇÏ¿´´Ù. óÀ½ÀÇ »ç·Ê¿¡¼­ ¸¸È­´Â °¡°øÀÇ Çö»óÀ» È®ÀÎÇϰųª Åä·ÐÇÏ°í ¹®Á¦¸¦ ÇØ°áÇÏ°í ÇнÀÀ» Æò°¡ÇÏ´Â µ¥ »ç¿ëµÇ¾ú´Ù. µÎ ¹ø° »ç·Ê¿¡¼­´Â °¡°øÀÇ Çö»óÀ» È®ÀÎÇÏ°í Åä·ÐÇÏ´Â µ¥ À־ ÁؽÇÇè ¿¬±¸ ¼³°è¸¦ ÇÏ¿´´Ù. ¿¬±¸ °á°ú´Â ÇбÞÀ» µ¿±âÈ­ÇÏ°í È°·Â ³ÑÄ¡°Ô Çϸç, ÇлýµéÀÇ ´ë¾ÈÀû °³³äÀ» È®ÀÎÇÏ°í ÇнÀÀ» Æò°¡ÇÒ »Ó ¾Æ´Ï¶ó, TV¸¦ Á» ´õ ºñÆÇÀûÀ¸·Î º¸±â À§ÇØ ÀÌ µµ±¸¸¦ »ç¿ëÇÒ °ÍÀ» ÁöÁöÇØ ÁØ´Ù.

Given the progressive loss of influence for the school relative to television in youngsters¡¯ everyday lives, this article describes the procedure and the results of including cartoons in the physics curriculum in secondary education. Work was carried out intensively with a small group of pupils and sporadically with a larger group. In the first case, cartoons were used for identifying and discussing fictitious phenomena, problem solving, and assessment of the learning. In the second case, for identifying and discussing fictitious phenomena, a quasi-experimental research design was followed. The results back the use of this didactic tool as an element for motivating and invigorating the classroom, for identifying the pupils¡¯ alternative ideas and the assessment of their learning, as well as for a more critical way of watching television.
----------------------------------------------------------------------

°úÇÐ ±³°ú ³»¿ë °úÁ¤¿¡¼­ ±³»ýµéÀÇ ÇнÀ °á°ú
Student teachers' Learning Outcomes during Science Subject Matter Courses.

Ekborg, Margareta1 Margareta.Ekborg@lut.mah.se
1Malmö University, Sweden

ÀÌ ¿¬±¸´Â ±³»ýµéÀÌ ±³»ç ±³À° ÇÁ·Î±×·¥À» ¹ÞÀ¸¸é¼­ ÇÙ½É »ýÅÂÇÐ °³³äÀÇ ÀÌÇظ¦ ¾î¶»°Ô °³¹ßÇØ °¡´ÂÁö Á¶»çÇÑ Á¾´ÜÀûÀÎ ¿¬±¸¿¡ ´ëÇÑ °ÍÀÌ´Ù. ¶Ç´Ù¸¥ ¸ñÀûÀº ±³»ýµéÀÌ ÇÁ·Î±×·¥¿¡ ¾î¶°ÇÑ Àǵµ¸¦ °¡Áö°í ÀÖ°í, ±×°ÍÀÌ ÇнÀ¿¡ ¾î¶² ¿µÇâÀ» ÁÖ´ÂÁö Á¶»çÇÏ´Â °ÍÀÌ´Ù. Çлýµé ÇÑ Áý´ÜÀ» ±³»ç ±³À° ÇÁ·Î±×·¥¿¡ ÀÖ´Â 2³â ¹Ý µ¿¾È ÃßÀûÇÏ¿´´Ù. Àüü Çлý Áý´Ü(47-60¸í)ÀÌ ¼¼ ¹øÀÇ ¼³¹®Áö¿¡ ´äÇÏ¿´´Ù. ȯ°æ±³À°°ú °ü·ÃÇÏ¿© ÇлýµéÀÇ °úÇÐ °³³äÀ» Á¶»çÇÏ¿´´Ù. È­ÀåÅÍ¿¡¼­ ³ª¿À´Â Æó¿­ÀÇ »ç¿ëÀ» ´Ù·é ½Å¹® ±â»ç¿¡ ´ëÇÏ¿© 14¸íÀÇ ÇлýµéÀ» 3Â÷·Ê ¸é´ãÇÏ¿´´Ù. Çлýµé¿¡°Ô ±³¼ö ÇÁ·Î±×·¥¿¡¼­ ±â´ëÇÏ´Â °Í, °úÇÐ °úÁ¤°ú Çб³ ½Ç½ÀÀÇ °æÇè¿¡¼­ ±â´ëÇÏ´Â °ÍÀ» Áú¹®ÇÏ¿´´Ù. ¸¹Àº ±³»ýµéÀÌ Á¦½ÃµÈ »çȸ-°úÇÐÀû ³íÀïÁ¡À» ´Ù·ç´Â µ¥ ÇÊ¿äÇÑ Á¤µµ·Î °³³äÀû ÀÌÇظ¦ °³¹ßÇÏÁö ¸øÇÏ´Â °ÍÀ¸·Î °á·ÐÁö¾ú´Ù. ¶ÇÇÑ ¸¹Àº ±³»ýµéÀÌ °úÇÐ ³»¿ë¿¡ ´ëÇÑ ÇнÀÀ» Á¢±ÙÇÒ ¶§ ÃÊµî ±³»çÀÇ ¾÷¹«¿¡ ´ëÇÑ ÀڽŵéÀÇ °³ÀÎÀûÀÎ °üÁ¡¿¡ µû¸£¸ç, ±× °üÁ¡Àº ±³À°°úÁ¤ÀÇ ¹ÙÅÁÀ» ±¸¼ºÇÏ´Â °üÁ¡À̳ª ±³»ç ±³À°ÀÚµéÀÇ Àǵµ¿Í´Â ´Ù¸¥ °ÍÀ̾ú´Ù. ÀÌ µÎ °á·Ð »çÀÌÀÇ ¿¬°áÀ» ³íÀÇÇÏ¿´´Ù.

This paper is about a longitudinal study to investigate how student teachers developed understanding of some key ecological concepts during a teacher education programme. Another aim was to interpret the student teachers' intentions in respect of the programme and to examine how these intentions influenced their learning. A group of students were followed through 2.5 years of a teacher education programme. The whole student group (n = 47–60) answered a questionnaire three times. Their understanding of scientific concepts, relevant to environmental education, was examined. Fourteen students were interviewed three times about a newspaper article discussing the use of surplus heat from a crematorium. The students were also asked about expectations of the teaching programme and of learning experiences from their science courses and from school practice. It is concluded that many of the student teachers did not develop the conceptual understanding necessary to be able to engage with the socio scientific issue presented to them. It also concludes that many of the student teachers approach the learning of science content from the perspective of their personal notions of the tasks of a primary schoolteacher, which is significantly different from the perspectives underpinning the curriculum and the intention of teacher educators. The connection between these two conclusions is discussed.
--------------------------------------------------------------------

¾î·Á¿î °úÇÐ ¸ðÇüÈ­ °úÁ¤: ÄÄÇ»ÅÍ¿¡ ±â¹ÝÇÑ ¸ðÇüÈ­ °úÁ¤¿¡¼­ ÃʽÉÀÚÀÇ Ãß·Ð ºÐ¼®
The Difficult Process of Scientific Modelling: An analysis of novices' reasoning during computer based modelling.

Sins, Patrick H. M.1 P.H.M.Sins@uva.nl
Savelsbergh, Elwin R.1,2
van Joolingen, Wouter R.1,3

1University of Amsterdam, The Netherlands
2University of Utrecht, The Netherlands
3University of Twente, the Netherlands

ÄÄÇ»ÅÍ ¸ðÇü°ú°¡ Çлýµé¿¡°Ô º¹ÀâÇÑ Çö»óÀ» ½ÉµµÀÖ°Ô ÀÌÇØÇÏ°Ô ÇØ ÁÖ´Â ¹æ¹ýÀ̶ó°í ³Î¸® ¾Ë·ÁÁ® ÀÖÁö¸¸, ¸ðÇüÈ­ °úÁ¤ ÀÚü´Â ´Ù¼Ò º¹ÀâÇÏ¸ç ºñ°èÈ­¸¦ ¿ä±¸ÇÑ´Ù. ÀûÀýÇÑ Áö¿øÀ» Á¦°øÇϱâ À§ÇØ ÇлýµéÀÌ »ç¿ëÇÏ´Â Ãß·Ð °úÁ¤°ú ¸ðÇü°ú °úÁ¦ ¼öÇà Áß¿¡ °Þ´Â ¾î·Á¿òÀ» ÀÚ¼¼È÷ ÀÌÇØÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. µû¶ó¼­ ÀÌ ¿¬±¸¿¡¼­´Â 2¸íÀÌ ÇÔ²² ¹°¸® ¿µ¿ª¿¡¼­ ¸ðÇüÈ­ °úÁ¦¸¦ ¼öÇàÇÏ´Â Çлýµé 26¸íÀ» °üÂûÇÏ¿´´Ù. ÇлýµéÀÌ »ç¿ëÇÏ´Â Ãß·Ð °úÁ¤ÀÇ À¯ÇüÀ» ã¾Æ³»±â À§ÇØ ºÐ·ù ü°è¸¦ °³¹ßÇÏ¿´´Ù. ¿¬±¸ °á°ú ´ëºÎºÐÀÇ ÇлýµéÀÌ »çÀü Áö½ÄÀ» Âü°íÇÏÁö ¾Ê°í ¸ðÇü º¯¼ö¸¦ ½ÇÇè µ¥ÀÌÅÍ¿¡ ºÎÇÕÇϵµ·Ï Á¶ÀýÇÏ´Â µ¥ °­ÇÏ°Ô ÁýÁßÇÏ¿´´Ù. ¼º°øÀûÀÎ ÇлýµéÀº ±×·¸Áö ¾Ê´Â Çлýµé¿¡ ºñÇØ »çÀü Áö½ÄÀ» ´õ ¸¹ÀÌ »ç¿ëÇÏ°í ±Í³³Àû Ãß·ÐÀ» ´õ ¸¹ÀÌ º¸¿´´Ù. ÀÌ·¯ÇÑ °üÂûÀ» ÅëÇØ ÀûÀýÇÑ ºñ°èÈ­ ¼³°è¿¡ ½Ã»çÁ¡À» Á¦¾ÈÇÏ¿´´Ù.

Although computer modelling is widely advocated as a way to offer students a deeper understanding of complex phenomena, the process of modelling is rather complex itself and needs scaffolding. In order to offer adequate support, we need a thorough understanding of the reasoning processes students employ and of difficulties they encounter during a modelling task. Therefore, in this study 26 students, working in dyads, were observed while working on a modelling task in the domain of physics. A coding scheme was developed in order to capture the types of reasoning processes used by students. Results indicate that most students had a strong focus on adjusting model parameters to fit the empirical data with little reference to prior knowledge. The successful students differed from the less successful students in using more prior knowledge and in showing more inductive reasoning. These observations lead to suggestions for the design of appropriate scaffolds.
--------------------------------------------------------------------

È¿À²ÀûÀÎ ÃÊµî °úÇÐ ¼ö¾÷ÀÇ °³¹ß¿¡¼­ ¸àÅä ½ÇÇàÀÇ È®ÀÎ
Identifying Mentoring Practices for Developing Effective Primary Science Teaching.

Hudson, Peter1 pb.hudson@qut.edu.au
1Queensland University of Technology, Australia

9°³ È£ÁÖ ´ëÇп¡¼­ ¿¹ºñ±³»ç Á¹¾÷¹Ý 331¸íÀÌ ÃÊµî °úÇб³À°¿¡¼­ÀÇ ÀÚ½ÅÀÇ ¸àÅ丵¿¡ ´ëÇÏ¿© °¡Áø ÀνÄÀ» ¹®Çå-±â¹Ý Á¶»ç·Î ¼öÁýÇÏ¿´´Ù. ¸àÅ丵¿¡ ´ëÇØ Á¦¾ÈµÈ 5°³ ¿äÀÎ(°³ÀÎÀû ¼Ó¼º, üÁ¦ ¿ä±¸, ±³À°ÇÐÀû Áö½Ä, ¸ðÇüÈ­, Çǵå¹é) ¾È¿¡¼­ ÀڷḦ ºÐ¼®ÇÏ¿´´Ù. ¿¬±¸ °á°ú ƯÈ÷ üÁ¦ ¿ä±¸, ±³À°ÇÐÀû Áö½Ä, ¸ðÇüÈ­ ¿äÀεé°ú ¿¬°üµÈ °úÇÐ ±³¼ö ½ÇÇà¿¡ ÀÖ¾î ´ëºÎºÐÀÇ ¸àÅÍ(ÃÊµî ±³»ç)°¡ ÃÊµî °úÇп¡ ´ëÇÑ ±¸Ã¼Àû ¸àÅ丵À» Á¦°øÇÏÁö ¾Ê¾Ò´Ù. ÀÌ ¿¬±¸´Â ¸àÅÍ°¡ ÃÊµî °úÇп¡¼­ ¸àÅ丵À» ÇÏ´Â ¹æ¹ýÀ» ´õ ±³À°¹Þ¾Æ¾ß ÇÔÀ» ÁÖÀåÇÏ°í, ¸àÅÍÀÇ ¸àÅ丵°ú ÃÊµî °úÇÐ ±³¼ö¸¦ °³¹ßÇϱâ À§ÇØ ±¸Ã¼ÀûÀÎ ¸àÅ丵 óġ°¡ ÀÖ¾î¾ß ÇÔÀ» Á¦¾ÈÇÑ´Ù.

A literature based survey gathered 331 final year preservice teachers' perceptions of their mentoring in primary science education from nine Australian universities. Data were analysed within five factors proposed for mentoring (i.e., Personal Attributes, System Requirements, Pedagogical Knowledge, Modelling, and Feedback). Results indicated that the majority of mentors (primary teachers) did not provide specific mentoring in primary science, particularly in the science teaching practices associated with the factors System Requirements, Pedagogical Knowledge, and Modelling. This study argues that mentors may require further education to learn how to mentor specifically in primary science, and proposes a specific mentoring intervention as a way forward for developing the mentor's mentoring and teaching of primary science.
---------------------------------------------------------------------

´ëÇпø °úÁ¤ÀÇ °úÇÐ ±³»ç°¡ ¹°¸®¸¦ ¼³¸íÇÏ´Â ¼º°Ý°ú Áú¿¡ »óÈ£ÀÛ¿ëÀû ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ÇÀÌ ¹ÌÄ¡´Â ¿µÇâ
The Impact of Interactive Computer Simulations on the Nature and Quality of Postgraduate Science Teachers¡¯ Explanations in Physics.

Zacharia, Zacharias C.1 zach@ucy.ac.cy
1University of Cyprus, Cyprus

ÀÌ ¿¬±¸´Â »óÈ£ÀÛ¿ëÀû ½Ã¹Ä·¹À̼ÇÀ¸·ÎºÎÅÍ °³ÀÎÀÌ ¾î¶»°Ô ¼³¸íÀ» ±¸¼ºÇÏ´ÂÁö, Áï °³ÀÎÀÌ °³³äÀ» ÀÌÇØÇÏ´Â Á¤µµ¸¦ È®ÀÎÇÏ´Â ¹æ½ÄÀ» Á¶»çÇÏ¿´´Ù. ±¸Ã¼ÀûÀÎ ¿¬±¸ÀÇ ¸ñÇ¥´Â »óÈ£ÀÛ¿ëÀû ÄÄÇ»ÅÍ ½Ã¹Ä·¹ÀÌ¼Ç ¶Ç´Â ±³°ú¼­ °úÁ¦¹°ÀÌ ´ëÇпø °úÁ¤ÀÇ °úÇÐ ±³»ç°¡ ¿ªÇÐ, Æĵ¿/±¤ÇÐ, ¿­¿ªÇп¡¼­ÀÇ ¹°¸® Çö»óÀ» ¼³¸íÇÏ´Â ¼º°Ý°ú Áú¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¶»çÇÏ´Â °ÍÀÌ´Ù. ÀÌ ¿¬±¸ÀÇ Âü¿©ÀÚ´Â ½ÇÁ¦ °úÇÐ ±³»çµéÀ̸ç, ÇÑ Çб⠵¿¾È ¹°¸® °³³ä Á¶»ç °úÁ¤¿¡¼­ ¿¹Ãø-°üÂû-¼³¸í(POE) ¸ðÇü¿¡ µû¶ó ½Ã¹Ä·¹À̼ÇÀ̳ª ±³°ú¼­ °úÁ¦¹°À» ¼öÇàÇÏ¿´´Ù. ¹Ý±¸Á¶È­µÈ ¸é´ãÀ¸·Î ÀڷḦ ¼öÁýÇÏ¿´°í Á¤¼ºÀû ³»¿ë ºÐ¼® ¹æ¹ýÀ¸·Î ºÐ¼®ÇÏ¿´´Ù. ¿¬±¸ °á°ú POE ¸ðÇüÀÇ Àû¿ë°ú ÇÔ²² ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ÇÀ» »ç¿ëÇÑ °ÍÀº °úÇÐ ±³»çÀÇ ¼³¸íÀÇ ¼º°Ý°ú Áú¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ´Ù. ±×°ÍÀº °úÇÐ ±³»ç°¡ °úÇÐÀûÀ¸·Î Á¤È®ÇÑ ¼³¸íÀ» ¸¸µé¾î ³»´Â ´É·ÂÀ» °³¼±½ÃÄ×°í, ¹°¸® Çö»ó¿¡ °ü·ÃµÈ °úÇÐ ¼³¸í Á¤º¸¸¦ ¼¼¹ÐÇÑ ¼öÁØÀ¸·Î ãµµ·Ï ÇØ ÁÖ¾ú´Ù. ¶ÇÇÑ ±³»çÀÇ ¼³¸íÀº Á» ´õ Á¤±³È­µÇ°í Àΰú Ã߸®¿Í Çü½ÄÀû Ã߸®¸¦ ¹Ý¿µÇÏ¿´´Ù.

This study investigated how individuals¡¯ construction of explanations a way of ascertaining how well an individual understands a concept develops from an interactive simulation. Specifically, the purpose was to investigate the effect of interactive computer simulations or science textbook assignments on the nature and quality of postgraduate science teachers¡¯ explanations regarding physical phenomena in Mechanics, Waves/Optics, and Thermal Physics. The use of simulations or science textbook assignments was implemented according to the Predict-Observe-Explain model and integrated into a one-semester conceptual survey course in physics for practising science teachers who served as participants in the study. Data were collected through semi-structured interviews and were analysed using a qualitative content analysis approach. Results indicate that the use of computer simulations along with the application of the predict-Observe-Explain model had a positive impact on the nature and quality of science teachers¡¯ explanations. They improved science teachers¡¯ ability to generate scientifically accurate explanations and fostered in-depth advancement in teachers¡¯ search for explanatory scientific information regarding the physical phenomena under investigation. In addition, teachers¡¯ explanations became more elaborate, reflecting cause-effect reasoning and formal reasoning.

÷ºÎ
IJSE27(14).hwp

ÇÑÀ翵, ÃæºÏ´ëÇб³

°úÇй®È­±³À°¿¬±¸¼Ò