"°úÇй®È­±³À°"

2006-03-25 (Vol 3, No 3)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, Vol. 26 Issue 06

Single-sex teaching and achievement in science

W. P. Robinson, Department of Psychology, University of Bristol, UK; e-mail:p.robinson@bristol.ac.uk; and E. Gillibrand, Graduate School of Education, University of Bristol, UK

The primary purpose was to investigate the efficacy of a full year of single-sex (SS) teaching of science. The secondary aims were to locate any differentiation by set and gender, and to relate these to more proximal variables. Participants were 13 year olds. Higher set girls gave evidence of clear benefits overall, and higher set boys also, except in biology. Lower set pupils performed at or below expectations. Analyses of additional questionnaire and interview data pointed to further reasons for avoiding the making of unqualified generalizations about SS teaching. Pupil preferences for SS teaching were relevant, as were gender differences in attitudes to biology and physics. Qualitative data suggested higher set girls benefited from more learningrelated classroom interaction and less interference and exploitation of girls by boys in SS classes. Lower set pupils complained that SS teaching deprived them of social interaction with the other sex. The concluding suggestion was that SS teaching offers affordances of benefits when mixed-sex teaching has specifiable disadvantages.

´Ü¼º¼ö¾÷°ú °úÇп¡¼­ÀÇ ¼ºÃëµµ

ÀÌ ¿¬±¸ÀÇ Ã¹ ¹ø° ¸ñÀûÀº °úÇÐ ¼ö¾÷¿¡¼­ ´Ü¼º¼ö¾÷ÀÇ È¿°ú¸¦ Ž»öÇÏ´Â °ÍÀÌ°í, µÎ ¹ø° ¸ñÇ¥´Â ¼ºÃëµµ¿Í ¼º¿¡ ÀÇÇÑ Â÷ÀÌ, ±×¸®°í ÀÌ°Í°ú ´Ù¸¥ °ü·ÃµÈ º¯Àεé°ú °ü°è¸¦ Áö¾îº¸´Â °ÍÀÌ´Ù. ¿¬±¸´ë»óÀº 13»ì ÇлýµéÀ̾ú´Ù. ¼ºÃëµµ°¡ ³ôÀº ¿©ÇлýµéÀº ÀüüÀûÀ¸·Î ºÐ¸íÇÑ ÀåÁ¡ÀÌ ÀÖÀ½À» ³ªÅ¸³»¾ú°í ¼ºÃëµµ°¡ ³ôÀº ³²Çлýµµ »ý¹°À» Á¦¿ÜÇÏ°í °°Àº °æÇâÀ» ³ªÅ¸³»¾ú´Ù. ¹Ý¸é¿¡ ³·Àº ¼ºÃëµµ¸¦ °¡Áø ÇлýµéÀº ±â´ëÇÑ °Íº¸´Ù ³·Àº ¼öÇà´É·ÂÀ» º¸¿©ÁÖ¾ú´Ù. Ãß°¡ÀûÀÎ ¼³¹®°ú ¸é´ãÀ¸·Î ¾ò¾îÁø ÀÚ·áÀÇ ºÐ¼®À¸·ÎºÎÅÍ ´Ü¼º¼ö¾÷¿¡ ´ëÇÑ ºÎÀûÀýÇÑ ÀϹÝÈ­¸¦ ¸¸µå´Â °ÍÀ» ¹èÁ¦ÇÒ¸¸ÇÑ Ãß°¡ÀûÀÎ ÀÌÀ¯µéÀÌ ¹àÇôÁ³´Ù. ´Ü¼º¼ö¾÷¿¡ ´ëÇÑ ÇлýµéÀÇ ¼±È£µµ´Â °ü·ÃÀÌ ÀÖ¾ú´Âµ¥, »ý¹°°ú ¹°¸®¿¡ ´ëÇÑ Åµµ¿¡¼­ ¼ºÂ÷µµ °ü·ÃÀÌ ÀÖ¾ú´Ù. ÁúÀûÀÎ µ¥ÀÌÅͷκÎÅÍ »óÀ§±Ç ¿©ÇлýµéÀº ´õ ¸¹Àº ÇнÀ°ü·Ã ±³½Ç »óÈ£ÀÛ¿ëÀ¸·Î ÀÎÇÏ¿© ±×¸®°í ´Ü¼º¼ö¾÷¿¡¼­ ³²Çлýµé¿¡ ÀÇÇÑ ¿©ÇлýµéÀÌ ¹Þ´Â °£¼·°ú ÂøÃë°¡ Àû¾îÁ®¼­ ±×·ÎÀÎÇÏ¿© À̵æÀ» ¹ÞÀ½ÀÌ ³ªÅ¸³µ´Ù. ¹Ý¸é ÇÏÀ§±Ç ÇлýµéÀº ´Ü¼º¼ö¾÷ÀÌ ´Ù¸¥ ¼º°úÀÇ »çȸÀûÀÎ »óÈ£ÀÛ¿ë ±âȸ¸¦ »©¾Ñ´Â´Ù°í ºÒÆòÀ» ÇÏ¿´´Ù. °á·ÐÀûÀ¸·Î ´Ü¼º¼ö¾÷Àº È¥¼º¼ö¾÷ÀÌ ¸í¹éÇÑ ´ÜÁ¡À» °¡Áö°í ÀÖÀ» ¶§¿¡ À¯¸®ÇÏ´Ù´Â °ÍÀ» Á¦½ÃÇÒ ¼ö ÀÖ´Ù.
---------------------------------------------------------
Talk and learning in classroom science

Lyn Dawes, De Montfort University, Bedford, UK; e-mail: Ldawes@dmu.ac.uk

This paper examines what is important about talk between learners during school science and, having identified this, suggests how we can ensure that what we consider important happens. By looking at the interaction between teachers and learners talking about science, it is possible to indicate ways in which learners can be helped to continue this learning conversation with one another when teacher support is withdrawn. Strategies for teaching and learning are examined. The paper reports on the findings of a research project designed to teach children how to negotiate their ideas about science concepts through rational dialogue. Children's development of scientific concepts in classrooms is undertaken through structured activity and mediated through oral language. Children must move forward simultaneously in their use of specialized vocabulary and in their understanding of current scientific explanations, models and ideas. New language and new ways of using language are learned by doing, which means for children, primarily speaking and listening. Children's understanding of science can benefit from teaching them to understand that spoken language is a powerful tool for thinking together.

±³½Ç °úÇп¡¼­ ´ëÈ­¿Í ÇнÀ

ÀÌ ³í¹®Àº Çб³°úÇп¡¼­ ÇнÀÀÚµé »çÀÌÀÇ ´ëÈ­¿¡¼­ ¹«¾ùÀÌ Áß¿äÇÑÁö¸¦ ¾Ë¾Æº¸´Â °ÍÀÌ´Ù. ÀÌ°Í¿¡ ´ëÇÑ È®ÀÎÀº ¿ì¸®°¡ Áß¿äÇÏ´Ù°í ¿©±ä °ÍÀÌ ÀϾ´ÂÁö¸¦ ¾î¶»°Ô È®ÀÎÇÒ ¼ö ÀÖ´ÂÁö¸¦ Á¦½ÃÇÑ´Ù. °úÇп¡ ´ëÇÑ ±³»ç¿Í ÇнÀÀÚµé ´ëÈ­ »çÀÌÀÇ »óÈ£ÀÛ¿ëÀ» °üÂûÇÔÀ¸·Î½á ÇнÀÀÚµéÀÌ ±³»çÀÇ µµ¿òÀÌ ¹èÁ¦µÇ¾úÀ» ¶§ ÇнÀÀÚµéÀÌ ¼­·Î¼­·Î¿Í ÀÌ·¯ÇÑ ÇнÀ ´ëÈ­¸¦ À̾´Âµ¥ µµ¿òÀ» ¹Þ´Â ¹æ½ÄµéÀ» ³ªÅ¸³»´Â °ÍÀÌ °¡´ÉÇÏ´Ù. ±³¼ö¿Í ÇнÀÀÇ Àü·«µéÀÌ °ËÅäµÇ¾ú´Ù. ÀÌ ³í¹®Àº Çлýµé¿¡°Ô °úÇÐ °³³ä¿¡ ´ëÇÑ ±×µéÀÇ »ý°¢À» ÇÕ¸®ÀûÀÎ ´ëÈ­¸¦ ÅëÇÏ¿© ¾î¶»°Ô Çù»óÇÏ´ÂÁö¸¦ °¡¸£Ä¡µµ·Ï ¼³°èµÈ ¿¬±¸ ÇÁ·ÎÁ§Æ®·ÎºÎÅÍ ¹ß°ßÇÑ °ÍÀ» º¸°íÇÑ´Ù. ¾ÆÀ̵éÀÇ ±³½Ç¿¡¼­ÀÇ °úÇÐÀû °³³äÀÇ ¹ß´ÞÀº ±¸Á¶È­µÈ È°µ¿À¸·ÎºÎÅÍ ¼öÇàµÇ°í ±¸µÎ ¾ð¾î¸¦ ÅëÇÏ¿© ÀüÇØÁ³´Ù. ¾ÆÀ̵éÀº µ¿½Ã¿¡ Ưº°ÇÑ ¿ë¾îµé°ú ÇöÀçÀÇ °úÇÐÀûÀÎ ¼³¸í¿¡ ´ëÇÑ ÀÌÇØ ¾È¿¡¼­ ¸ðµ¨°ú ¾ÆÀ̵ð¾î¸¦ »ç¿ëÇؾ߸¸ ÇÏ¿´´Ù. »õ·Î¿î ¾ð¾î¿Í ¾ð¾î¸¦ »ç¿ëÇÏ´Â »õ·Î¿î ¹æ½ÄÀ» ¾ÆÀ̵éÀÌ ¹è¿ì´Âµ¥, ÁÖ·Î ¸»Çϱâ¿Í µè±â¸¦ ÅëÇÏ¿©¼­¿´´Ù. ¾ÆÀ̵éÀÇ °úÇп¡ ´ëÇÑ ÀÌÇØ´Â ±×µé¿¡°Ô ±¸µÎ ¾ð¾î°¡ ¼­·Î »ý°¢Çϴµ¥ °­·ÂÇÑ µµ±¸¶ó´Â °ÍÀ» ÀÌÇØÇϵµ·Ï °¡¸£Ä§À¸·Î½á À̵æÀ» º¼ ¼ö ÀÖ¾ú´Ù.
---------------------------------------------------------
How primary school students understand mains electricity and its distribution

Vassiliki Pilatou; e-mail: vpilatou@uth.gr; Heleni Stavridou, University of Thessaly, School of Humanities, Department of Primary Education,
Argonafton & Filellinon, Volos 38221, Greece

The aim of this study was to detect primary students' conceptions about the origin and conveyance of electric current and about the connection of household electric appliances. In total, 383 students (aged 11-12) from the town of Volos, Greece, participated; 213 of them drawn from experimental classes and 170 from control groups. The results reported are derived from the analysis of answers to four questions included in a written questionnaire (pre-test and post-test). Before teaching, children tended to suggest that three appliances can work together at the same time because the electric current is powerful and exists everywhere. They drew one cable for the electricity's transmission from its origin to 'our house' and they represented each electrical device working independently with its own wire connected to a wall-socket. After a 9-hour constructivist teaching intervention, many of the students in the experimental classes accepted that we can bring three electric devices into operation at the same time, and they understand that they can be connected in parallel each one having its own circuit. Also, a lot of children drew two cables (i.e. a circuit) from the electricity company up to 'our house' and represented the parallel connection of three electrical appliances. The answers/drawings of the traditional classes had not developed after teaching.

¾î¶»°Ô ÃʵîÇлýµéÀÌ Àü±â¿Í Àü±âÀÇ ºÐÆ÷¸¦ ÀÌÇØÇϴ°¡?

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃʵîÇлýµéÀÇ Àü·ù¿Í °¡Á¤ Àü±âÁ¦Ç°ÀÇ ¿¬°á¿¡ ´ëÇÏ¿© Àü¿ø°ú Àü´Þ¿¡ ´ëÇÑ °³³äÀ» ¾Ë¾Æº¸´Â °ÍÀÌ´Ù. ±×¸®½ºÀÇ º¼·Î½º Áö¹æÀÇ 11-12»ì 383¸íÀÇ ÇлýµéÀÌ ¿¬±¸¿¡ Âü¿©ÇÏ¿´´Âµ¥, 213¸íÀº ½ÇÇèÁý´ÜÀÌ°í 170¸íÀº ÅëÁ¦Áý´ÜÀ¸·Î ÇÏ¿´´Ù. ÇлýµéÀÌ ÀÛ¼ºÇÑ 4°¡Áö ¼³¹®(»çÀü°Ë»ç¿Í »çÈÄ°Ë»ç)À¸·ÎºÎÅÍ ºÐ¼®À» ÇÏ¿´´Ù. ÇнÀÀÌÀü¿¡ ¾ÆÀ̵éÀº ¼¼ °³ÀÇ °¡ÀüÁ¦Ç°µéÀÌ µ¿½Ã¿¡ ÀÛµ¿ÇÒ ¼ö ÀÖÀ½À» Àü·ù°¡ °­·ÂÇÏ°í ¾îµð³ª Á¸ÀçÇϱ⠶§¹®À̶ó°í ÀÀ´äÇÏ´Â °æÇâÀÌ ÀÖ¾ú´Ù. ¾ÆÀ̵éÀº Àü¿øÀ¸·ÎºÎÅÍ ¡®¿ì¸® Áý¡¯À¸·Î ÇϳªÀÇ ÄÉÀ̺íÀ» ²ø¾î¿Ô°í °¢°¢ÀÇ Àü±â ±â±¸µéÀº º®¼ÒÄÏ¿¡ ¿¬°áµÈ ÀÚ½ÅÀÇ Àü¼±À¸·Î µ¶¸³ÀûÀ¸·Î ÀÛ¿ëÇÑ´Ù°í Ç¥ÇöÇÏ¿´´Ù. 9½Ã°£ÀÇ ±¸¼ºÁÖÀÇÀû ±³¼öÇнÀÀ» ¹ÞÀº ÈÄ¿¡ ½ÇÇèÁý´ÜÀÇ ¸¹Àº ÇлýµéÀº ¿ì¸®°¡ ¼¼ °³ÀÇ °¡ÀüÁ¦Ç°À» µ¿½Ã¿¡ ÀÛµ¿½Ãų ¼ö ÀÖ´Ù´Â »ç½ÇÀ» ¹Þ¾Æµé¿´°í, ±×µéÀº °¢°¢ ÀڽŸ¸ÀÇ È¸·Î¸¦ ±¸¼ºÇÏ´Â º´·Ä·Î ¿¬°áµÉ ¼ö ÀÖÀ½À» ÀÌÇØÇÏ¿´´Ù. ¶ÇÇÑ ¸¹Àº ÇлýµéÀº µÎ °³ÀÇ ÄÉÀ̺í(¿¹: Àü·ù)À» Àü±âȸ»ç¿¡¼­ ¡®¿ì¸® Áý¡¯À¸·Î ²ø¾î¿ÔÀ¸¸ç ¼¼ °³ÀÇ Àü±â ±â±¸ÀÇ º´·Ä¿¬°áÀ» ³ªÅ¸³»¾ú´Ù. ÀüÅëÀûÀÎ ¼ö¾÷ÀÇ ÀÀ´ä/±×¸²Àº ±³¼ö ÀÌÈÄ¿¡ ¹ßÀüµÇÁö ¾Ê¾Ò´Ù.
---------------------------------------------------------
Tough acts to follow: the challenges to science teachers presented by biotechnological progress

Tom Bryce; e-mail: t.g.k.bryce@strath.ac.uk; Donald Gray, University of
Strathclyde, Glasgow, Scotland

The public controversies associated with biotechnological progress (genetic modification, cloning, and so forth) increasingly impact upon biology teaching in school; teachers find themselves engaged in discussions with pupils on value-laden issues deriving from the social and ethical implications of the 'new science'. The research described in this paper focused upon the thinking of a sample of 41 biology teachers as they endeavoured to implement the first year of the new Scottish Advanced Higher Biology course and to face the challenges associated with these controversies. Following questionnaire returns, the investigation employed semistructured, in-depth interviews with 10 teachers and, separately, with their 61 pupils (17-18 years of age) and was part of a medium-term to long-term evaluation of a university summer school that had endeavoured to update these teachers on recent biotechnological advances. While teachers were found to be fairly positively disposed to handling discussion of such contentious matters, they were none-too-clear as to its precise merits and functions; many lack confidence in handling discussion. The research indicates that much needs to be tackled by way of professional development for science teachers now engaged in dimensions new to science teaching.

µû¸£±â¿¡ ¾î·Á¿î È°µ¿: »ý¸í±â¼úÀûÀÎ Áøº¸¸¦ Á¢ÇÏ´Â °úÇб³»ç¿¡ÀÇ µµÀü

»ý¸í±â¼úÀûÀÎ Áøº¸(À¯Àü º¯Çü, Ŭ·Ð µî)¿Í °ü·ÃµÈ ´ëÁßÀûÀÎ ³íÀïÀº Á¡Â÷ Çб³¿¡¼­ »ý¹° ¼ö¾÷¿¡ ¿µÇâÀ» ÁÖ°í ÀÖ´Ù. ±³»çµéÀº Çлýµé°ú »õ·Î¿î °úÇÐÀÇ »çȸÀû µµ´öÀû °ü·Ã¼ºÀ¸·ÎºÎÅÍ ³ª¿À´Â °¡Ä¡¿¡ ´ëÇÑ ¹®Á¦¿¡ ´ëÇؼ­ Çлýµé°ú Åä·ÐÀ» ÇÏ°í ÀÖ´Ù. ÀÌ ³í¹®¿¡¼­ Á¦½ÃµÇ´Â ¿¬±¸´Â »õ·Î¿î ½ºÄÚƲ·£µå °í±Þ »ý¹°ÇÐ ¼ö¾÷ÀÇ Ã¹Çб⸦ ¸ÂÀÌÇÏ°í ÀÌ·¯ÇÑ ³íÀï¿¡ °ü·ÃµÈ µµÀü¿¡ Á÷¸éÇÑ 41¸íÀÇ »ý¹° ±³»çµéÀÇ »ç°í¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Ù. ¿¬±¸´Â ¼³¹®À» ½Ç½ÃÇÏ°í 10¸íÀÇ ±³»ç¿Í °³º°ÀûÀ¸·Î 61¸íÀÇ Çлýµé(17-18¼¼)¿¡ ´ëÇÑ ºñ±¸Á¶È­µÈ ½ÉÃþ¸éÁ¢À» ¹ÙÅÁÀ¸·Î ÇÏ°í ÀÖ´Ù. ±³»çµéÀº ±×·¯ÇÑ ³íÀïÀûÀÎ ¹®Á¦µé¿¡ ´ëÇÑ Åä·ÐÀ» ´Ù·ç´Âµ¥ »ó´çÈ÷ ±àÁ¤ÀûÀ¸·Î Áغñ°¡ µÇ¾î ÀÖ´Â °ÍÀ¸·Î ¹àÇôÁ³Áö¸¸, ±×°ÍÀÇ ºÐ¸íÇÑ ÀåÁ¡°ú ÀÛ¿ë¿¡ ´ëÇؼ­ ±×·¸°Ô ºÐ¸íÇÏÁö´Â ¾Ê¾Ò¾Æ ¸¹Àº ±³»çµéÀÌ Åä·ÐÀ» ´Ù·ç´Âµ¥ ÀڽۨÀÌ ºÎÁ·ÇÏ¿´´Ù. ÀÌ ¿¬±¸´Â °úÇб³»ç¸¦ À§ÇÑ Àü¹®¼º °³¹ßÀÇ ¹æ½Ä¿¡ ÀÇÇÑ ¸¹Àº Çʿ伺µéÀÌ °úÇб³¼ö¿¡ »õ·Î¿î Â÷¿øÀ¸·Î °ü¿©µÊÀ» ÁöÀûÇÏ°í ÀÖ´Ù.
---------------------------------------------------------
How some college students represent their understandings of the nature of scientific theories

Zoubeida R. Dagher; Nancy W. Brickhouse, School of Education, University of Delaware, Newark, DE 19716–-2922, USA; Harry Shipman, Department of Physics and Astronomy, University of Delaware, William J. Letts, School of Teacher Education, Charles Sturt University, Bathurst, NSW, Australia

This study explores college students' representations about the nature of theories during their enrollment in a large astronomy course with instruction designed to address a number of nature of science issues. We focus our investigation on how nine students represent their understanding of theory, how they distinguish between scientific theories and non-scientific theories, and how they reason about specific theories. Students' notions of theory were classified under four main categories: (1) hypothesis, (2) idea with evidence, (3) explanation, and (4) explanation based on evidence. Students' condition for deciding whether a given idea is a scientific theory or not were classified under six criteria: content domain, convention, evidence, mathematical content, methodology, and tentativeness. Students expressed slight levels of variation between their reasoning about scientific theories in general and specific theories they learned in the course. Despite increased sophistication in some students' representations, this study affirms the complex dimensions involved in teaching and assessing student understanding about theories. The implications of this study underscore the need to explicitly address the nature of proof in science and issues of tentativeness and certainty students associate with scientific theories, and provide students with more opportunities to utilize the language of science.

´ëÇлýµéÀÌ °úÇÐÀû ÀÌ·ÐÀÇ º»¼º¿¡ ´ëÇÑ »ý°¢À» ¾î¶»°Ô ³ªÅ¸³»´Â°¡?

ÀÌ ¿¬±¸´Â ¼ö¸¹Àº °úÇÐÀû ¹®Á¦µéÀÇ º»¼ºÀ» ´Ù·ç´Â õ¹®ÇÐ ¼ö¾÷¿¡ Âü¿©ÇÑ ´ëÇлýµéÀÌ ³ªÅ¸³½ ÀÌ·ÐÀÇ º»¼º¿¡ ´ëÇÑ Ç¥ÇöµéÀ» Ž»öÇÏ¿´´Ù. ¿ì¸®´Â 9¸íÀÇ ÇлýµéÀÌ À̷п¡ ´ëÇÏ¿© ¾î¶»°Ô ±×µéÀÌ ÀÌÇØÇÑ ¹Ù¸¦ Ç¥ÇöÇÏ´ÂÁö, °úÇÐÀûÀÎ À̷аú ºñ°úÇÐÀûÀÎ ÀÌ·ÐÀ» ¾î¶»°Ô ±¸ºÐÇÏ´ÂÁö, ±×¸®°í ƯÁ¤ÇÑ À̷е鿡 ´ëÇؼ­ ¾î¶»°Ô Ãß·ÐÇÏ´ÂÁö¿¡ ÃÊÁ¡À» µÎ°í ÀÖ´Ù. ÇлýµéÀÇ À̷п¡ ´ëÇÑ »ý°¢Àº 4°¡Áö ÁÖ¿ä ¹üÁÖ(°¡¼³, Áõ°Å¸¦ °®´Â »ý°¢, ¼³¸í, Áõ°Å¿¡ ¹ÙÅÁÀ» µÐ ¼³¸í)·Î ºÐ·ùµÇ¾ú´Ù. ÁÖ¾îÁø ¾ÆÀ̵ð¾î°¡ °úÇÐÀûÀÎ ÀÌ·ÐÀÎÁö ¾Æ´ÑÁö¸¦ °áÁ¤ÇÏ´Â °ÍÀº ¿©¼¸ °¡Áö ôµµ(³»¿ë ¿µ¿ª, ÇÕÀÇ, Áõ°Å, ¼öÇÐÀû ³»¿ë, ¹æ¹ý·Ð, °¡¼³-ºÒÈ®½Ç)·Î ºÐ·ùµÇ¾ú´Ù. ÇлýµéÀº ÀϹÝÀûÀÎ °úÇÐÀûÀÎ À̷п¡ ´ëÇÑ Ã߷аú ±×µéÀÌ ¼ö¾÷¿¡¼­ ¹è¿î ƯÁ¤ÇÑ ÀÌ·Ðµé »çÀÌ¿¡ ¾à°£ÀÇ º¯È­¸¦ Ç¥ÇöÇÏ¿´´Ù. ¸î ÇлýµéÀÇ Ç¥Çö¿¡ ³ªÅ¸³­ Áõ°¡µÈ ±Ëº¯¿¡µµ ºÒ±¸ÇÏ°í ÀÌ ¿¬±¸´Â ±³¼ö¿Í ÇлýµéÀÇ À̷п¡ ´ëÇÑ ÀÌÇظ¦ Æò°¡Çϴµ¥ °ü·ÃµÈ º¹ÀâÇÑ Â÷¿øµéÀ» È®½ÅÇÑ´Ù. ÀÌ ¿¬±¸¿¡¼­´Â °úÇп¡¼­ Áõ¸íÀÇ º»¼º, ÇлýµéÀÌ °úÇÐÀû À̷п¡ °ü°èÇÏ´Â ºÒÈ®½ÇÇÏ°í È®½ÇÇÑ ¹®Á¦µéÀ» ºÐ¸íÇÏ°Ô ¼Ò°³ÇؾßÇÒ Çʿ伺À» °­Á¶ÇÏ°í ÀÖÀ¸¸ç Çлýµé¿¡°Ô °úÇÐÀÇ ¾ð¾î¸¦ »ç¿ëÇÒ ´õ ¸¹Àº ±âȸ¸¦ Á¦½ÃÇØ¾ß ÇÑ´Ù´Â °ÍÀ» °­Á¶ÇÏ°í ÀÖ´Ù.
---------------------------------------------------------
Probing scientists' beliefs: how open-minded are modern scientists?

Richard K. Coll; e-mail: r.coll@waikato.ac.nz; Centre for Science and
Technology Education Research, University of Waikato, New Zealand and Neil
Taylor, School of Education, University of New England, Australia

Just how open-minded are modern scientists? In this paper we examine this question for the science faculty from New Zealand and UK universities. The Exeter questionnaire used by Preece and Baxter (2000) to examine superstitious beliefs of high school students and preservice science teachers was used as a basis for a series of in-depth interviews of scientists across a variety of disciplines. The interviews sought to understand the basis on which scientists form beliefs and how they judge evidence for various propositions, including those from the Exeter questionnaire and other contentious beliefs introduced during discourse. The scientists are dismissive of traditional superstitions like bad luck associated with black cats and inauspicious numbers such as 13, seeing such beliefs as socially grounded. There is a strong socio-cultural aspect to other beliefs and personal experiences, and strongly held personal beliefs are influential, resulting in the scientists keeping an open mind about contentious beliefs like alien life and the existence of ghosts. Testimony of others including media reports are deemed unreliable unless provided by credible witnesses such as 'educated people' or 'experts', or if they coincide with the scientists' personal beliefs. These scientists see a need for potential theoretical explanations for beliefs and are generally dismissive of empirical evidence without underlying explanations.

°úÇÐÀÚµéÀÇ ¹ÏÀ½À» »ìÆ캸±â: Çö´ë °úÇÐÀÚµéÀº ¾î´À Á¤µµ ¸¶À½ÀÌ ¿­·ÁÀִ°¡?

Çö´ë °úÇÐÀÚµéÀº ¾î´À Á¤µµ ¸¶À½ÀÌ ¿­·ÁÀִ°¡? ÀÌ ³í¹®¿¡¼­ ¿ì¸®´Â ´ºÁú·£µå¿Í ¿µ±¹ÀÇ ´ëÇÐÀÇ °úÇבּ¸Àڵ鿡 ´ëÇÑ ÀÌ·¯ÇÑ Áú¹®¿¡ ´ëÇÏ¿© ¿¬±¸ÇÏ¿´´Ù. °íµîÇлý°ú ¿¹ºñ±³»çµéÀÇ ¹Ì½ÅÀûÀÎ ¹ÏÀ½À» °Ë»çÇϱâ À§ÇÏ¿© Preece¿Í Baxter(2000)¿¡ ÀÇÇؼ­ »ç¿ëµÈ Exeter¼³¹®ÀÌ ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ ÀÖ´Â °úÇÐÀڵ鿡 ´ëÇÑ ½ÉÃþ¸éÁ¢À» À§ÇÑ ±âÃÊÀÚ·á·Î »ç¿ëµÇ¾ú´Ù. ¸é´ãÀº °úÇÐÀÚµéÀÌ ¾î¶² ±âÃÊ¿¡ ÀÇÇؼ­ ¹ÏÀ½À» ¸¸µé¾î³»°í, ¾î¶»°Ô ±×µéÀÌ ´Ù¾çÇÑ ¸íÁ¦µé·ÎºÎÅÍ Áõ°Å¸¦ ÆÇ´ÜÇÏ´ÂÁö¸¦ ÀÌÇØÇÏ·Á°í ÇÏ¿´´Ù. °úÇÐÀÚµéÀº °ËÀº °í¾çÀÌ¿¡ ´ëÇÑ ºÒÇàÀ̳ª ¼ýÀÚ 13°ú °°Àº ºÒÇàÇÑ ¼ýÀÚ¿Í °°Àº ÀüÅëÀûÀÎ ¹Ì½Åµé¿¡ ´ëÇÏ¿© ¸ê½ÃÀûÀÎ ÀÇ°ßÀ» ³ªÅ¸³»¾ú´Ù. ´Ù¸¥ ¹ÏÀ½°ú °³ÀÎÀûÀÎ °æÇè¿¡ ´ëÇÑ °­ÇÑ »çȸ¹®È­ÀûÀÎ Ãø¸éÀÌ ÀÖÀ¸¸ç, °³ÀÎÀûÀÎ ¹ÏÀ½Àº Å« ¿µÇâÀ» ÁÖ´Â °ÍÀε¥ °á°úÀûÀ¸·Î °úÇÐÀÚµéÀº ¿Ü°è»ý¸íü³ª À¯·ÉÀÇ Á¸Àç¿Í °°Àº ³íÀïÀûÀÎ ¹ÏÀ½¿¡´Â ¸¶À½ÀÌ ¿­·Á ÀÖ¾ú´Ù. ¹Ìµð¾î º¸°í¼­¸¦ Æ÷ÇÔÇÑ ´Ù¸¥ Áõ°ÅµéÀº ±³À°¹ÞÀº »ç¶÷À̳ª Àü¹®°¡¿¡ ÀÇÇÑ ¹ÏÀ»¸¸ÇÑ Áõ°Å°¡ Á¦½ÃµÇÁö ¾ÊÀ¸¸é ¶Ç´Â ±×°ÍµéÀÌ °úÇÐÀÚµéÀÇ °³ÀÎÀûÀÎ ¹ÏÀ½°ú ÀÏÄ¡ÇÏÁö ¾ÊÀ¸¸é ¹ÏÀ½Á÷ÇÏ´Ù°í ¿©±âÁö ¾Ê´Â´Ù. ÀÌ·¯ÇÑ °úÇÐÀÚµéÀº ¹ÏÀ½À» À§Çؼ­ ÀáÀçÀûÀÎ ÀÌ·ÐÀû ¼³¸í¿¡ ´ëÇÑ Çʿ並 ´À³¢¸ç ÀϹÝÀûÀ¸·Î ¼³¸íÀÌ ÁÖ¾îÁöÁö ¾Ê´Â °æÇèÀûÀÎ Áõ°ÅµéÀº ¹Þ¾ÆµéÀÌÁö ¾Ê´Â´Ù.

÷ºÎ
IJSE_V26_N06.hwp

À̺À¿ì, ´Ü±¹´ëÇб³ °úÇб³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò