"°úÇй®È­±³À°"

2006-07-25 (Vol 3, No 7)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Education, 28(5), 2006

1. ÃÊµî ±³½Ç¿¡¼­ °úÁ¤Àû ÀÌÇØ ´É·Â °³¹ßÀ» À§ÇÑ ÀÚ·áºñ±³ ¹× Çؼ®Çϱâ È°¿ë: ½ÇÇ࿬±¸·ÎºÎÅÍ ¾òÀº »ç·Ê¿¬±¸ Áõ°Å
Using Data Comparison and Interpretation to Develop Procedural Understandings in the Primary Classroom: Case study evidence from action research.

Warwick, Paul; Siraj-Blatchford, John.
International Journal of Science Education, 4/14/2006, Vol. 28 Issue 5, p443-467

°úÇÐÀÇ º»¼º °­Á¶¿¡ ÃÊÁ¡À» µÐ °úÇб³À° °³¹ßÀº Ž±¸¸¦ Çϱâ À§ÇØ ÇÙ½ÉÀûÀÎ °úÇÐÀû Á¢±ÙÀ¸·Î¼­ ¾Æµ¿ÀÇ °úÁ¤Àû ÀÌÇØ ´É·Â ½ÅÀå¿¡ È°¿ëÇÒ ¼ö ÀÖ´Â ¡®±³¼ö µµ±¸¡¯¸¦ ÇÊ¿ä·Î ÇÏ°Ô µÈ´Ù. ÀÌ ³í¹®Àº ÃʵîÇб³ ¾Æµ¿µéÀÇ °úÁ¤Àû ÀÌÇØ »ç¿ëÀ» ÀÚ±ØÇϱâ À§ÇÑ ¡®µµ±¸¡¯·Î¼­ ÀÌÂ÷ ÀڷḦ È°¿ëÇÏ´Â °Í¿¡ °­Á¶¸¦ µÐ Çùµ¿Àû ½ÇÇ࿬±¸ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇؼ­ º¸°íÇÑ´Ù. ³í¹®¿¡¼­´Â ÀÌÂ÷ ÀÚ·áÀ̸ç Çؼ®Àû ÀÚ·áÀÇ ºñ±³ ºÐ¼®ÀÌ ±×¿Í °°Àº È°µ¿ÀÇ ±â¹ÝÀ» Á¦°øÇÒ ¼ö ÀÖÀ½À» ³íÀÇÇÑ´Ù. ±×·¯³ª ±×¿Í °°Àº ºñ±³ ºÐ¼®Àº ¾Æµ¿ÀÌ ºñ±³¸¦ ÅëÇØ µå·¯³­ ³íÁ¦¿¡ ´ëÇÑ ±×µéÀÇ ÀÌÇظ¦ ³íÀÇÇÒ ±âȸ°¡ ¾È³»µÉ ¶§ °úÇÐÀû È°µ¿ÀÇ Çùµ¿Àû º»¼ºÀ» ¹Ý¿µÇÏ´Â °ÍÀÌ´Ù. ÀÌ ¿¬±¸´Â Ž±¸¸¦ À§ÇÑ °úÇÐÀû Á¢±ÙÀÌ °úÇп¡¼­ ±¸¼ºµÈ Áö½Ä ¿ä±¸¿Í ¿¬°üÀ» ÅëÇؼ­ »óȲȭµÈ´Ù¸é ¾Æµ¿ÀÌ ÀÌ ÀÚ·á 󸮸¦ °¡Àå Àß ¼öÇàÇÑ´Ù°í Á¦¾ÈÇÏ°í ÀÖ´Ù.
The development of a science education that includes a focus upon the nature of science suggests the need for ¡°pedagogic tools¡± that can be used to engage children with the procedural understandings that are central to the scientific approach to enquiry. This paper reports on a collaborative action research project that focused on the use of secondary data as just such a ¡°tool¡± for stimulating engagement with procedural understandings among primary school children. It argues that the comparative analysis of secondary and investigative data can provide a basis for such engagement. However, such comparative analysis will only mirror the collaborative nature of the scientific enterprise where children have guided opportunities to discuss their understanding of the issues revealed by the comparisons. The research suggests that children work best with this data if the scientific approach to enquiry is contextualized through connection with the knowledge claims made in science.
----------------------------------------------------------------------

2. ÇлýÀÇ °úÇÐÀû ¼³¸í°¡¼³ »ý¼º °úÁ¤¿¡ ´ëÇÑ ¸ðÇü ºÐ¼®
Modelling Analysis of Students¡¯ Processes of Generating Scientific Explanatory Hypotheses.

Jongwon Park (Àü³²´ëÇб³ ¹ÚÁ¾¿ø ±³¼ö: ¿ªÀÚ ñÉ)
International Journal of Science Education, 4/14/2006, Vol. 28 Issue 5, p469-489

ºÒÀÏÄ¡ »ç·Ê¿¡ ´ëÇØ ¼³¸í °¡¼³À» »ý¼ºÇÏ´Â °ÍÀÌ ÇлýÀÇ °³³ä º¯È­¿¡ ÀÖ¾î Áß¿äÇÏ´Ù´Â °ÍÀÌ ÃÖ±Ù µé¾î ¾Ë·ÁÁö°í ÀÖ´Ù. ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÇлýÀÌ ¾î¶»°Ô »õ·Î¿î ¼³¸í °¡¼³À» »ý¼ºÇÏ´Â Áö¿¡ ´ëÇؼ­ Á¶»çÇÏ´Â °ÍÀÌ´Ù. À̸¦ À§ÇØ ¿ì¼± ¹®Á¦µéÀ» ÅëÇØ ÀüÀÚ±â À¯µµ¿¡ ´ëÇÑ ÇлýÀÇ ¼±°³³äÀ» È®ÀÎÇÑ ÈÄ, °¥µî Çö»óÀ» º¸¿©ÁØ µÚ 6¸íÀÇ ´ëÇлý¿¡°Ô ±× Çö»óÀ» ¼³¸íÇϱâ À§ÇÑ ¼³¸í°¡¼³À» Á¦¾ÈÇϵµ·Ï ¿ä±¸ÇÏ¿´´Ù. ¸é´ãÀ» ÅëÇÏ¿© ¼³¸í°¡¼³ »ý¼º °úÁ¤À» ºÐ¼®ÇÏ¿´°í ±× °á°ú ÇлýÀÇ °¡¼³ Á¦¾ÈÀÌ ÀÌ·ÐÀû, °æÇèÀû ¹× º¸Á¶ °¡¼³ µîÀÇ ¼¼ °¡Áö À¯ÇüÀ¸·Î ±¸ºÐµÊÀ» ¹àÇû´Ù. ¶ÇÇÑ °¢ À¯ÇüÀÇ ¼³¸í °¡¼³ »ý¼ºÀÇ ¸ðÇüÀ» Á¦¾ÈÇÏ¿´´Ù. °á·ÐÀûÀ¸·Î ¿¬±¸´ë»óµéÀº ¼³¸íÇؾßÇÏ´Â °¥µî Çö»ó°ú ±×µéÀÇ ¹è°æ Áö½Ä ¶Ç´Â °æÇèÀ» ¿¬°ü½ÃÅ°±â À§Çؼ­ À¯»ç¼º ±â¹Ý Ã߸®¸¦ »ç¿ëÇÑ´Ù´Â °ÍÀ» ¾Ë¾Æ³Â´Ù. ¹è°æ Áö½ÄÀº »õ·Î¿î ÀÌ·ÐÀû ¼³¸í °¡¼³À» »ý¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. ÀÌ ³í¹®¿¡´Â ¡°°úÇÐÀû °¡¼³ »ý¼º¡± ±â¼úÀ» Çâ»ó½ÃÅ°±â À§ÇÑ °úÇÐÀû Ž±¸È°µ¿À» ¶ÇÇÑ Á¦¾ÈÇÏ¿´´Ù.
It has recently been determined that generating an explanatory hypothesis to explain a discrepant event is important for students¡¯ conceptual change. The purpose of this study is to investigate how students generate new explanatory hypotheses. To achieve this goal, questions are used to identify students¡¯ prior ideas related to electromagnetic induction. After showing conflicting phenomena, six college students are asked to suggest explanatory hypotheses to explain the phenomena. Using interviews, the processes of generating explanatory hypotheses are analyzed and three types of hypotheses suggested by students are subsequently identified: theoretical, experiential, and auxiliary hypotheses. In addition, models of generating each type of explanatory hypothesis are also suggested. It is concluded that subjects use similarity-based reasoning to relate their background knowledge or experiences with the conflicting phenomena to be explained. Background knowledge plays a very important role in generating new theoretical explanatory hypotheses. An example of a scientific inquiry activity for improving the skill of ¡°generating scientific hypotheses¡± is also presented in this paper.
---------------------------------------------------------------------

3. ÁßÇб³¿¡¼­ °úÇÐ µ¶ÇØÀÇ ¾ð¾î ¿ä±¸
The Language Demands of Science Reading in Middle School

Zhihui Fang
International Journal of Science Education, 4/14/2006, Vol. 28 Issue 5, p491-520

Çб³ °úÇп¡¼­ Áö½Ä, ½Å³ä ¹× ¼¼°è°ü ±¸¼ºÀ» À§ÇØ »ç¿ëµÇ´Â ¾ð¾î´Â ÇлýµéÀÌ ÀÏ»ó»ýÈ°¿¡¼­ »ç¿ëÇÏ´Â »çȸÀû ¾ð¾î¿Í´Â ±¸º°µÈ´Ù. ÀÌ Â÷ÀÌÁ¡Àº ¸¹Àº Çлýµé, ƯÈ÷ ³­µ¶ÀÚµé°ú ¿µ¾î ÇнÀÀڵ鿡°Ô µ¶ÇØ °ï¶õÀÇ ÁÖ¿ä ¿øÀÎÀÌ µÈ´Ù. ÀÌ ³í¹®Àº ÁßÇб³ °úÇÐ Áö¹® Àб⿡ Æ÷ÇÔµÈ ¾ð¾îÇÐÀû µµÀüµéÀ» ¹àÈ÷°í, ÇлýµéÀÌ ÀÌ µµÀüÀ» ´ëóÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¸î °¡Áö ±³¼ö Àü·«µéÀ» Á¦¾ÈÇÑ´Ù. ³í¹®Àº ¶ÇÇÑ Çб³ °úÇÐÀÇ µ¶Æ¯ÇÑ ¾ð¾î¿¡ ÁÖÀÇÇÏ´Â °ÍÀÌ °úÇÐ ¼Ò¾ç ±³À°ÀÇ ÅëÇÕÀû ºÎºÐÀÌ µÇ¾î¾ß ÇÑ´Ù´Â °ÍÀ» ÁÖÀåÇÑ´Ù.
The language used to construct knowledge, beliefs, and worldviews in school science is distinct from the social language that students use in their everyday ordinary life. This difference is a major source of reading difficulty for many students, especially struggling readers and English-language learners. This article identifies some of the linguistic challenges involved in reading middle-school science texts and suggests several teaching strategies to help students cope with these challenges. It is argued that explicit attention to the unique language of school science should be an integral part of science literacy pedagogy.
--------------------------------------------------------------------
4. ¿¬±¸ º¸°í
RESEARCH REPORT. (º»·¡ ¿¬±¸Á¦¸ñÀÌ ¾Æ´Ñ °Í °°À¸³ª IJSE°¡ Á¦°øÇÏ´Â ³í¹® Á¤º¸¿¡ Á¦¸ñÀÌ ÀÌ·¸°Ô Ç¥½ÃµÊ: ¿ªÀÚ ñÉ)

Galili, Igal; Lehavi, Yaron.
International Journal of Science Education, 4/14/2006, Vol. 28 Issue 5, p521-541,

ÀÌ ¿¬±¸´Â °íµîÇб³ ¹°¸® ±³»çÀÇ ¹°¸® °³³äÀ» Á¤ÀÇÇÏ´Â ´É·Â°ú ±×·¯ÇÑ Á¤ÀÇÀÇ Á߿伺¿¡ ´ëÇÑ ±×µéÀÇ °üÁ¡µé·Î ±¸¼ºµÇ¾î ÀÖ´Ù. ¹üÁÖº°·Î ÃàÀûµÈ Á¤ÀǵéÀ» Á¤·ÄÇÏ´Â °ÍÀÌ °¡´ÉÇÏ¸ç ±×·¸°Ô ¾ò¾îÁø ºÐ·ù°¡ °úÇРöÇÐÀÇ ºÐ·ù¿Í Á¶È­¸¦ ÀÌ·é´Ù´Â °ÍÀ» ¹àÇû´Ù. ÀÌ ¿¬±¸ÀÇ ´ë»óÀÌ ±³»çÀÌÁö¸¸ ±×µéÀÌ ³»¸° Á¤Àǵ鿡´Â °áÇÔµéÀÌ ¹ß°ßµÇ¾ú´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ±³»çµéÀº °³³ä Á¤ÀÇ¿¡ ´ëÇÑ Áö½Ä¿¡ »ó´çÇÑ Á߿伺À» ºÎ¿©ÇÏ¿´´Ù. °úÇб³À°¿¡¼­ °³³ä Á¤ÀÇÀÇ Á߿伺¿¡ ´ëÇÑ °è¼ÓÀûÀÎ ³íÀï°ú ¿¬°üÇÏ¿© ÀÌ·¯ÇÑ ¹ß°ßÁ¡µéÀÇ ½Ã»çÁ¡µéÀ» ³íÀÇÇÏ¿´´Ù. °³³ä Á¤ÀÇÀÇ ±³À°Àû °¡Ä¡°¡ ³ôÀ½À» ³íÇÏ°í ÀÌ·¯ÇÑ Áö½ÄÀÇ ºÎÁ·ÀÌ ±³»ç ±³À°ÀÇ ´ÜÁ¡À̶ó´Â °ÍÀ» ÁöÀûÇÏ¿´´Ù.
A study was made of the ability of a population of high-school physics teachers to define physics concepts and of their views regarding the importance of such definitions. It was found possible to arrange the definitions accumulated in categories, and the classification so obtained was consonant with that of the philosophy of science. Although the subjects of this study were experienced teachers, the definitions they supplied exhibited shortcomings. Despite this, however, the teachers attached great importance to a knowledge of concept definitions. The implications of these findings in connection with the ongoing debate regarding the importance of concept definitions in science education are discussed. The high educational value of concept definitions is argued and a deficiency in this knowledge points to the shortcoming in teacher training.
----------------------------------------------------------------------
5. °íµîÇб³ ÇлýµéÀÇ ÀüÀÚ±âÇп¡ ´ëÇÑ ÀÌÇØ
Upper High School Students¡¯ Understanding of Electromagnetism.

Sağlam, Murat; Millar, Robin.
International Journal of Science Education, 4/14/2006, Vol. 28 Issue 5, p543-566

ÀüÀÚ±âÇÐÀº ¸¹Àº ±¹°¡ÀÇ ÁßµîÇб³ »ó±ÞÇг⠹°¸® ±³À°°úÁ¤¿¡¼­ Áß¿äÇÑ ¿ä¼ÒÀÌÁö¸¸, »ó´ëÀûÀ¸·Î ÀÌ ÁÖÁ¦¿Í °ü·ÃÇÑ ÇлýÀÇ ÀÌÇØ¿¡ ´ëÇؼ­ ¾Ë·ÁÁø ¿¬±¸´Â °ÅÀÇ ¾ø´Ù. 16°³ÀÇ Áø´ÜÀû ¹®Ç×À¸·Î ±¸¼ºµÈ ÁöÇÊ °Ë»ç¸¦ °³¹ßÇÏ¿© ÅÍÅ°(120¸í)¿Í ¿µ±¹(152¸í) °íµîÇб³ ÇлýµéÀÇ ÀüÀÚ±âÇп¡ ´ëÇÑ ÀÌÇظ¦ Á¶»çÇÏ´Â µ¥ »ç¿ëÇÏ¿´´Ù. ¶ÇÇÑ °ø°£»ó ȸÀüÀ» ½Ã°¢È­ÇÏ´Â °Í¿¡ ´ëÇÑ 10°³ÀÇ ¹®Ç×À¸·Î ±¸¼ºµÈ º°µµÀÇ °Ë»ç¸¦ »ç¿ëÇÏ¿© ÀÌÂ÷¿ø Ç¥ÇöÀ¸·ÎºÎÅÍ »ïÂ÷¿øÀû »óȲÀ» ½Ã°¢È­ÇÏ´Â ÇлýÀÇ ´É·ÂÀÌ ÀüÀÚ±âÇÐ ÇнÀ¿¡ ¿µÇâÀ» ÁÙ °ÍÀ̶ó´Â °¡¼³À» Á¶»çÇÏ¿´´Ù. ¸¹Àº ÇлýµéÀÇ ¹ÝÀÀÀº ¿À°³³äÀ» º¸À̰ųª, ÇлýµéÀÌ ÀüÀÚ±âÇп¡ ´ëÇØ Á¤ÇÕÀûÀΠü°è¸¦ °¡ÁöÁö ¸øÇß´Ù´Â °ÍÀ» µå·¯³»´Â ºñÀÏ°ü¼ºÀ» ³ªÅ¸³Â´Ù. °øÅëÀûÀÎ ½Ç¼öµé¿¡´Â Àü±âÀå°ú ÀÚ±âÀåÀÇ ¿µÇâÀ» È¥µ¿ÇѴٰųª, ¿ª¼±(field line)À» È帧À» ³ªÅ¸³»´Â °ÍÀ¸·Î °£ÁÖÇѴٰųª, ÀΰúÃ߸®¸¦ Àû¿ëµÇÁö ¾Ê´Â »óȲ¿¡ Àû¿ëÇϰųª, ¾î¶² º¯¼öÀÇ º¯È­À²°ú °ü·ÃµÈ Çö»óÀ» ´Ù·ë¿¡ À־ ³ªÅ¸³µ´Ù. °ø°£»ó ȸÀü¿¡ °üÇÑ ¼öÇàÀº ÀüÀÚ±âÇÐ ¹®Ç׿¡ ´ëÇÑ ¼öÇà°ú ´ÜÁö ¾àÇÑ »ó°ü¸¸À» ³ªÅ¸³Â´Ù. ¿¬±¸ °á°ú Çлýµé¿¡°Ô ÀÚ±âÀå À¯Çü°ú È¿°ú¸¦ ½Ã°¢È­ÇÏ´Â °ÍÀ» µ½´Â °Í°ú ÇлýµéÀÇ »ý°¢À» º¸´Ù Á¤ÇÕÀûÀΠü°è ¾ÈÀ¸·Î ÅëÇÕÇÏ´Â °ÍÀ» µ½´Â ±³¼ö ¹æ·«ÀÌ ÇÊ¿äÇÏ´Ù´Â °ÍÀ» Á¦¾ÈÇÏ¿´´Ù.
Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students¡¯ understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school students in Turkey ( n = 120) and England ( n = 152). A separate test consisting of 10 questions on the visualization of spatial rotation was used to investigate the hypothesis that students¡¯ ability to visualize three-dimensional situations from two-dimensional representations might influence learning of electromagnetism. Many students¡¯ responses showed misunderstandings and inconsistencies that suggested they did not have a coherent framework of ideas about electromagnetism. Common errors included confusing electric and magnetic field effects, seeing field lines as indicating a ¡°flow¡±, using cause–effect reasoning in situations where it does not apply, and dealing with effects associated with the rate of change of a variable. Performance on the spatial rotation test was, however, only weakly correlated with performance on the electromagnetism questions. The findings suggest the need to develop teaching strategies that help students to visualize magnetic field patterns and effects, and assist them in integrating ideas into a more coherent framework.

÷ºÎ
IJSE28(5).hwp

ÀÓ¼º¹Î, ´ë±¸´ëÇб³

°úÇй®È­±³À°¿¬±¸¼Ò