"°úÇй®È­±³À°"

2006-10-25 (Vol 3, No 10)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

International Journal of Science Edudation, 26(1), 2004

Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons

Roehrig, Gilliam

'Science as inquiry' is a key content standard in the National Science Education Standards to be enacted by US science teachers. This paper is the result of a study that was conducted in order to understand factors that impacted the inquiry-based instruction of 14 beginning secondary science teachers. These teachers were part of a collaborative university/school district induction program designed to facilitate inquiry-based instruction. For a period of 1 year, the teachers were followed in an attempt to understand their teaching beliefs, instructional practices, knowledge of the nature of science and scientific inquiry, and their experiences with inquiry instruction in the classroom. Case and cross-case comparisons revealed five main constraints that impacted their enactment of inquiry-based instruction: an understanding of the nature of science and scientific inquiry, content knowledge, pedagogical content knowledge, teaching beliefs, and concerns about management and students. This study reinforces the need for standards-based induction programs that offer various forms of support to assist beginning science teachers.

°úÇÐŽ±¸¼ö¾÷À» ¼öÇàÇÏ´Â Ãʺ¸ Áßµî °úÇб³»ç¿¡ ÀÇÇØ °æÇèµÇ´Â Á¦¾àµé

¡®Å½±¸·Î¼­ÀÇ °úÇС¯Àº ¹Ì±¹°úÇб³À°±âÁØ¿¡¼­ ¹Ì±¹°úÇб³»çµé¿¡ ÀÇÇØ ¼öÇàµÇ´Â ÇÙ½ÉÀû ³»¿ëÀÇ Ç¥ÁØÀÌ´Ù. ÀÌ ³í¹®Àº 14 ¸íÀÇ Ãʺ¸ Áßµî°úÇб³»çµéÀÇ Å½±¸±â¹Ý¼ö¾÷¿¡ ¿µÇâÀ» ÁÖ´Â ¿ä¼Ò¸¦ ÀÌÇØÇϱâ À§Çؼ­ ½Ç½ÃµÇ¾îÁø ¿¬±¸ÀÇ °á°úÀÌ´Ù. ÀÌ ±³»çµéÀº Ž±¸±â¹Ý¼ö¾÷À» ÃËÁøÇϱâ À§Çؼ­ °í¾ÈµÈ ´ëÇаú Çб³ÀÇ Çù·ÂÀûÀÎ ±³À°ÇÁ·Î±×·¥ÀÇ ºÎºÐÀ̾ú´Ù. 1³â µ¿¾È, ±³»çµé¿¡°Ô ±×µéÀÇ ±³À° ½Å³ä°ú ±³À°ÀûÀÎ ¿¬½À, °úÇÐÀÇ º»¼º°ú °úÇÐÀû Ž±¸ÀÇ Áö½Ä ±×¸®°í ±³½Ç¿¡¼­ Ž±¸±³À°ÀÇ °æÇèµéÀ» ÀÌÇØÇϱâ À§ÇÑ ½Ãµµ¸¦ ¼öÇàÇÏ¿´´Ù. »ç·Ê¿¬±¸¿Í ±³Â÷ »ç·Êºñ±³¿¬±¸´Â Ž±¸±â¹Ý±³¼öÀÇ ¼öÇà¿¡ ¿µÇâÀ» ÁÖ´Â 5°¡Áö ÁÖ¿äÇÑ Á¦¾àµé(°úÇÐÀÇ º»¼º°ú °úÇÐÀû Ž±¸ÀÇ ÀÌÇØ, ³»¿ëÁö½Ä, ±³À°ÇÐÀûÀÎ ³»¿ëÁö½Ä, ±³À°½Å³ä°ú Çлý°ú °ü¸®¿¡ ´ëÇÑ °í¹Î)À» ¹àÇô³Â´Ù. ÀÌ ¿¬±¸´Â Ãʺ¸ º¸Á¶ °úÇб³»ç¸¦ µ½±â À§ÇÑ ´Ù¾çÇÑ ÇüÅÂÀÇ Áö¿øÀ» Á¦°øÇϴ ǥÁØ ±â¹Ý À¯µµ ÇÁ·Î±×·¥ÀÇ Çʿ伺À» °­Á¶ÇÑ´Ù.

----------------------------------------------------------------
Student's discussion in practical scientific inquiries

J. Rod Watson, Julian R. L. Swain, Cam McRobbie

This study explores the extent to which small group argumentation and discussion was used as part of a series of three practical inquiry-based science lessons in each of two Year 8 (age 12-13) classes. The actions and talk of the teacher and two target groups of students in each class were recorded using video-recorders and audiorecorders. Students and teachers were interviewed and all the students completed a questionnaire. These data were analysed to explore the quantity and quality of discussions in different parts of the inquiry and the sociocultural factors that influenced the discussions. The analysis shows that both the quantity and quality of discussion of the inquiry was low. It is argued that the socio-cultural context in which the lessons took place led students to view inquiry as a set of routine procedures, which were used to produce a written product, rather than as a process of discussion and decision-making.

½ÇÁ¦ÀûÀÎ °úÇРŽ±¸¿¡¼­ ÇлýµéÀÇ Åä·Ð

ÀÌ ¿¬±¸´Â ¼Ò±Ô¸ð ±×·ìÀÇ ³íÀï¿Í Åä·ÐÀÌ 8Çгâ(12-13¼¼)ÀÎ µÎ ¹Ý °úÇÐ °ú¸ñÀ» Åä´ë·Î ¼¼ °¡Áö ½ÇÁ¦ÀûÀΠŽ±¸±â¹Ý °úÇмö¾÷ÀÇ ÀÏºÎ·Î½á »ç¿ëµÇ´Â Á¤µµ¸¦ Ž»öÇÑ´Ù. °¢ ¹Ý¿¡ µÎ ±×·ìÀÇ Çлýµé°ú ¼±»ý´ÔÀÇ Çൿ°ú ´ëÈ­´Â ¿Àµð¿À¿Í ºñµð¿À¸¦ »ç¿ëÇØ ³ìÀ½, ³ìÈ­ µÇ¾ú´Ù. ÀÌ·¸°Ô ¸ð¿©Áø ÀÚ·áµéÀº Åä·Ð¿¡ ¿µÇâÀ» ÁÙ ¼ö ÀÖ´Â ¿ä¼ÒÀΠŽ±¸Àû ¿ä¼Ò¿Í »çȸ ¹®È­ÀûÀÎ ¿ä¼Òµé·Î ³ª´µ¾îÁ® Åä·ÐÀÇ Áú°ú ¾çÀ» ¿¬±¸Çϱâ À§ÇØ ºÐ¼®µÇ¾ú´Ù. ÀÌ ºÐ¼®Àº Ž±¸Àû ¿ä¼Ò¿¡¼­ Åä·ÐÀÇ Áú°ú ¾çÀº ³·À½À» º¸¿©ÁÖ¾ú´Ù. ¼ö¾÷ÀÌ ÀϾ´Â »çȸ ¹®È­ÀûÀÎ ¸Æ¶ôÀº ÇлýµéÀÌ Å½±¸¸¦ ÀÏ»óÀûÀÎ °úÁ¤(ÀÌ ÀÏ»óÀûÀÎ °úÁ¤Àº Åä·Ð°ú ÀÇ»ç°áÁ¤ÀÇ °úÁ¤À¸·Î¶ó±âº¸´Ù´Â ¹®¼­·Î µÈ °á°ú¹°À» »ý¼ºÇϱâ À§ÇÏ¿© »ç¿ëµÇ´Â °ÍÀÌ´Ù)À¸·Î ÀνÄÇÏ°Ô ÇÑ´Ù°í ³íÀǵǾú´Ù.

----------------------------------------------------------------
Relationships between selective cognitive variables and students¡¯ ability to solve chemistry problems

BouJaoude, Saoum, Sara Salloum, Saoum, Abd-El-Khalick, Foua

The purposes of this study were: to compare students' performance on conceptual and algorithmic chemistry problems; to investigate the relationships between learning orientation, formal reasoning, and mental capacity and students' performance on conceptual and algorithmic problems; and to investigate interactions among learning orientation, formal operational reasoning, and mental capacity. Participants were Grade 11 students enrolled in scientific sections of three Lebanese schools. Learning orientation, formal reasoning and mental capacities were measured using the Learning Approach Questionnaire, the Test of Logical Thinking, and the Figural Intersection Test, respectively. Also, students solved conceptual and low M-demand and high M-demand algorithmic chemistry problems. Students' performance on conceptual and algorithmic problems was compared. Regression analyses were used to examine the predictive power of the cognitive variables on each type of chemistry problems. In addition, performance of meaningful and rote learners was compared on all types of problems. Results showed that students performed significantly better on algorithmic than on conceptual problems. Moreover, meaningful learners outperformed rote learners on a test of conceptual problems while no significant differences existed for both levels of algorithmic problems. The three cognitive variables were significant predictors of performance on conceptual chemistry problems but not on algorithmic problems.

¼±ÅÃÀûÀÎ ÀÎÁöº¯¼ö¿Í È­ÇÐ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ ÇлýµéÀÇ ´É·Â »çÀÌÀÇ °ü°è
ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº (1)°³³äÀûÀÌ°í ³í¸®ÀûÀÎ È­ÇÐ ¹®Á¦µé¿¡ ´ëÇÑ ÇлýµéÀÇ ¼º°ú¸¦ ºñ±³ÇÏ°í, (2)ÇнÀ ÁöÇâ, Çü½ÄÀûÀÎ Ãß·Ð, ÁöÀûÀÎ Àç´É°ú °³³äÀûÀÌ°í ±ÔÄ¢ÀûÀÎ ¹®Á¦¿¡ ´ëÇÑ ÇлýµéÀÇ ¼º°ú¸¦ Ž»öÇÏ°í, (3)ÇнÀ ÁöÇâ, Çü½ÄÀûÀÎ Ãß·Ð, ÁöÀûÀÎ Àç´É »çÀÌÀÇ »óÈ£ÀÛ¿ëÀ» Ž»öÇϱâ À§ÇÑ °ÍÀÌ´Ù. Âü¿©ÀÚµéÀº 3°³ÀÇ ·¹¹Ù³í Çб³µé °¡¿îµ¥ÀÇ 11ÇгâÀÇ ÇлýµéÀÌ´Ù. ÇнÀ ÁöÇâ, Çü½ÄÀûÀÎ Ãß·Ð, ÁöÀûÀÎ Àç´ÉÀº °¢°¢ ÇнÀÁ¢±Ù¼³¹®(Learning Approach Questionnaire), ³í¸®Àû »ç°í °Ë»çÁö(the Test of Logical Thinking)¿Í ±×¸²±³Â÷°Ë»ç(the Figural Intersection Test)·Î ÃøÁ¤µÇ¾ú´Ù. °³³äÀûÀÌ°í ¾Ë°í¸®ÁòÀûÀÎ ¹®Á¦µé¿¡¼­ ÇлýµéÀÇ ¼º°ú´Â ºñ±³µÇ¾ú´Ù. °¢°¢ÀÇ È­ÇÐ ¹®Á¦ À¯Çü¿¡ ´ëÇÑ ÀÎÁöÀû º¯¼öÀÇ ¿¹¾ðÀû ´É·ÂÀ» °ËÁõÇϱâ À§ÇÏ¿© ȸ±ÍºÐ¼®ÀÌ »ç¿ëµÇ¾ú´Ù. µ¡ºÙ¿© ÀÇ¹Ì ÀÖ°í ÆÇ¿¡ ¹ÚÈù ÇнÀÀÚÀÇ ¼öÇà°á°ú°¡ ¸ðµç ÇüÅÂÀÇ ¹®Á¦¿¡¼­ ºñ±³µÇ¾ú´Ù. ¿¬±¸ °á°ú´Â ÇлýµéÀÌ °³³äÀûÀÎ ¹®Á¦¿¡¼­º¸´Ù ¾Ë°í¸®ÁòÀûÀÎ ¹®Á¦¿¡¼­ ´õ µÎµå·¯Áö°Ô Àß ¼öÇàÇÑ´Ù´Â °ÍÀ» º¸¿©Áá´Ù. ´õ¿íÀÌ ÀÇ¹Ì ÀÖ´Â ÇнÀÀÚµéÀº °³³äÀûÀÎ ¹®Á¦µéÀÇ °Ë»ç¿¡¼­ ¹«Åδë°í ¿Ü¿ì´Â »ç¶÷À» ´É°¡ÇßÀ¸³ª ¾Ë°í¸®ÁòÀûÀÎ ¹®Á¦µé¿¡¼­´Â º° Â÷ÀÌ°¡ ³ªÅ¸³ªÁö ¾Ê¾Ò´Ù. 3°¡ÁöÀÇ ÀÎÁö º¯¼ö´Â ¾Ë°í¸®ÁòÀÇ ¹®Á¦°¡ ¾Æ´Ï¶ó °³³äÀûÀÎ È­ÇÐ ¹®Á¦¿¡¼­ÀÇ ¼º°úÀÇ Áß¿äÇÑ ¿¹¾ðÀÚÀ̾ú´Ù.
----------------------------------------------------------------
Making pupils¡¯ conceptions of electricity more durable by means of situated metacognition

Georghiades, Petros

This paper argues for the integration of metacognitive thinking into the content of school science. It describes the ' metacognitive instances ' approach of implanting metacognitive activities, such as classroom discussions, annotated drawing, keeping diary-like notes and concept-mapping, at selected points of the teaching procedure, in an attempt to extend the durability of children's science understanding, which is often short-lived. The approach was tested with 60 Year 5 pupils in Cyprus studying 'Current Electricity', following a quasiexperimental design with one experimental and one comparative group. Following the teaching of the unit, participants were tested on their understanding of electricity three times in one school year. The research showed that the practice of metacognition is feasible with primary school pupils and that children who experienced situated metacognition retained taught concepts for a longer period of time. Although no significant difference was recorded initially in the amount of subject matter learned by the two groups, children who engaged in metacognitive activities appeared to have achieved more permanent re-structuring of their understandings.

----------------------------------------------------------------
¸ÞŸÀÎÁö¿¡ ÀÇÇؼ­ ÇлýµéÀÇ Àü±â¿¡ ´ëÇÑ °³³äÀ» ´õ ±æÁ¦ ¿µ¼ÓµÇ°Ô ¸¸µé±â

ÀÌ ³í¹®Àº ¸ÞŸ ÀÎÁöÀûÀÎ »ç°íÀÇ Çб³°úÇÐÀÇ ³»¿ëÀ¸·ÎÀÇ ÅëÇÕ¿¡ ´ëÇÏ¿© ³íÀÇÇÏ´Â °ÍÀÌ´Ù. ÀÌ°ÍÀº ÇÐ±Þ Åä·Ð, ÁÖ¼® ´Þ±â, Àϱ⠾²±â-³ëÆ®¿Í °³³äÁöµµ¸¦ º¸À¯Çϱâ, °¡¸£Ä¡´Â ÇàÀ§ÀÇ ¿äÁ¡À» ¼±ÅÃÇØ ÇлýÀÇ °úÇÐ ÀÌÇØÀÇ ¿µ¼Ó¼ºÀ» È®ÀåÇÏ°íÀÚ ½ÃµµÇÏ´Â ¸ÞŸÀÎÁöÀû Çൿ¿¡ Á¢±ÙÇØ ´Ù°¡°¡´Â ¡®¸ÞŸÀÎÁöÀûÀÎ »ç·Ê¡¯¸¦ ±â¼úÇÑ´Ù. ÀÌ ¿¬±¸´Â È帣´Â Àü·ù ¿¬±¸¸¦ ÇϳªÀÇ ½ÇÇè ±×·ì°ú ºñ±³ ±×·ìÀ¸·Î ÇÏ¿© Å°ÇÁ·Î½º¿¡¼­ 5ÇлýÀ» 60¸í¿¡ ´ëÇؼ­ °Ë»çÇß´Ù. ´ÜÀ§¸¦ °¡¸£Ä£ ´ÙÀ½, Âü°¡ÀÚ´Â ÇÑ Çг⵵ ¾È¿¡ 3Â÷·Ê ±×µéÀÇ Àü±âÀÇ ÀÌÇظ¦ Å×½ºÆ® ¹Þ¾Ò´Ù. ÀÌ ¿¬±¸´Â ¸ÞŸÀÎÁöÀÇ ¿¬½ÀÀÌ ¸ÞŸÀÎÁö¸¦ °æÇèÇÑ ÃʵîÇб³ ÇлýµéÀÌ ´õ ¿À·£ ±â°£ °¡¸£Ä£ °³³äÀ» Áö´Ñ´Ù´Â °¡´É¼ºÀÌ ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú´Ù. ºñ·Ï µÎ ±×·ìÀÌ ¹è¿î ±³°úÀÇ ¾çÀÌ Ãʱ⿡ ±â·Ï¿¡¼­ Áß¿äÇÑ Â÷ÀÌÁ¡Àº ¾ø¾úÀ»Áö¶óµµ ¸ÞŸÀÎÁö È°µ¿ ¾È¿¡ Âü¿©ÇÑ ¾ÆÀ̵éÀÌ ±×µéÀÇ ÀÌÇØ¿¡ ´ëÇÑ ´õ ¿µ±¸ÀûÀÎ ±¸¼ºÀ» ´Þ¼ºÇÑ °ÍÀ» ³ªÅ¸³Â´Ù.

÷ºÎ
V26N01_2004.hwp

À̺À¿ì
´Ü±¹´ëÇб³ °úÇб³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò