"°úÇй®È­±³À°"

2006-11-25 (Vol 3, No 11)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

Internatioal Journal of Science Education, 25(12),2003

Using a cognitive structural model to provide new insights into students' understandings of diffusion

Debra Panizzon

In their paper, Martinez, Solanto, and Jiminez compared a number of methodologies used to describe students' understandings of scientific conceptions. One of the issues raised by the authors was the lack of a theoretical platform based in the area of cognition upon which the data were analysed. This paper investigates students' understandings of diffusion through the application of a cognitive structural perspective provided by the Structure of the Observed Learning Outcome model devised by Biggs and Collis. In this study, 60 senior secondary school and 120 first-year university science students were presented with two extended response questions regarding diffusion. Four months after the completion of the questionnaires, 30 students were interviewed. The responses obtained from the students were interpreted using the Structure of the Observed Learning Outcome model. The results from the study provided strong evidence of a pathway of conceptual understanding of diffusion from simple intuitive ideas about movement to highly abstract views in which students explained the random motion of molecules in terms of kinetic theory. These results were consistent for both the high school and university students. In addition, the pathway provided a means of interpreting previous research results and practical ways of improving instruction in the future.

ÇлýµéÀÇ È®»ê¿¡ ´ëÇÑ ÀÌÇØ¿¡ ´ëÇÑ ÅëÂûÀ» Á¦°øÇϱâ À§ÇÑ ÀÎÁö±¸Á¶¸ðµ¨ÀÇ »ç¿ë

³í¹®¿¡¼­ Martinez¿Í Solanto, Jiminez´Â ÇлýµéÀÌ ¾î¶»°Ô °úÇÐ °³³äÀ» ÀÌÇØÇϴ°¡¸¦ ¼³¸íÇÏ´Â ¸î °¡Áö ¹æ¹ý·ÐÀ» ºñ±³Çß´Ù. ÁýÇÊÀÚµéÀÌ Á¦±âÇÑ ¹®Á¦ Áß Çϳª´Â ±× ¹æ¹ý·ÐµéÀº µ¥ÀÌÅ͸¦ ÀÎ½Ä ¿µ¿ª¿¡¼­ ºÐ¼®Çߴµ¥ ±× ÀÎ½Ä ¿µ¿ª¿¡¼­ ±âÃÊÇÑ ÀÌ·ÐÀû ±Ù°Å°¡ ºÎÁ·ÇÏ´Ù´Â °ÍÀ̾ú´Ù. ÀÌ ³í¹®Àº Biggs¿Í Collis°¡ °í¾ÈÇÑ Structure of the Observed Learning Outcome ¸ðµ¨ÀÇ ÀÎ½Ä ±¸Á¶ °üÁ¡À» Àû¿ëÇØ ÇлýµéÀÌ È®»êÀ» ¾î¶»°Ô ÀÌÇØÇϴ°¡ Á¶»çÇß´Ù. ¿¬±¸¿¡¼­ 60¸íÀÇ °í3 Çлýµé°ú 120¸íÀÇ ´ëÇб³ 1Çгâ ÇлýµéÀÌ È®»ê¿¡ ´ëÇÑ Áú¹®¿¡ µÎ °¡Áö ±¤¹üÀ§ÇÑ ´äº¯À» Çß´Ù. ¾ÓÄÉÆ®¸¦ ÇÑ 4´Þ ÈÄ 30¸íÀÇ ÇлýÀ» ÀÎÅͺäÇß´Ù. ±×¸®°í ÇлýµéÀÇ ´äº¯À» Structure of the Observed Learning Outcome ¸ðµ¨À» ÀÌ¿ëÇØ Çؼ®Çß´Ù. ±× ¿¬±¸ °á°ú´Â ¿îµ¿¿¡ ´ëÇÑ ´Ü¼øÇÑ Á÷°üÀû °³³ä¿¡¼­ºÎÅÍ ÇлýµéÀÌ µ¿¿ªÇÐ ÀÌ·Ð ¿ë¾î Áß ºÐÀÚµéÀÇ ºÒ±ÔÄ¢ ¿îµ¿À» ¼³¸íÇÏ´Â ¸Å¿ì Ãß»óÀû °üÁ¡¿¡¼­ÀÇ È®»êÀ» °³³äÀûÀ¸·Î ÀÌÇØÇÏ´Â °úÁ¤ÀÇ °­·ÂÇÑ Áõ°Å¸¦ Á¦°øÇß´Ù. ÀÌ °á°ú´Â °íµîÇлý°ú ´ëÇлý ¸ðµÎ¿¡°Ô¼­ ÀÏÄ¡Çß´Ù. °Ô´Ù°¡, ÀÌ °úÁ¤Àº ÀÌÀüÀÇ ¿¬±¸ °á°úµéÀ» Çؼ®ÇÒ ¹æ¹ýÀ» Á¦°øÇßÀ¸¸ç ÇâÈÄ ±³¼ö¹ýÀ» °³¼±ÇÒ ½Ç¿ëÀû ¹æ¹ýµéµµ Á¦°øÇß´Ù.

--------------------------------------------------------------------
Teacher education in the generative virtual classroom: developing learning theories through a web-delivered, technology-and-science education context.

Schaverien, Lynette

This paper reports the use of a research-based, web-delivered, technology-and-science education context (the Generative Virtual Classroom) in which student-teachers can develop their ability to recognize, describe, analyse and theorize learning. Addressing well-recognized concerns about narrowly conceived, anachronistic and ineffective technology-and-science education, this e-learning environment aims to use advanced technologies for learning, to bring about larger scale improvement in classroom practice than has so far been effected by direct intervention through teacher education. Student-teachers' short, intensive engagement with the Generative Virtual Classroom during their practice teaching is examined. Findings affirm the worth of this research-based e-learning system for teacher education and the power of a biologically based, generative theory to make sense of the learning that occurred.


°¡»óÀÇ ±³½Ç¿¡¼­ÀÇ »ç¹ü±³À°: À¥±â¹Ý, ±â¼ú-°úÇÐ ±³À°ÀÇ ¸Æ¶ôÀ» ÅëÇÑ ÇнÀÀÌ·ÐÀÇ ¹ß´Þ

ÀÌ ¹®¼­´Â ¿¬±¸±â¹Ý, À¥±â¹Ý, °úÇбâ¼úÀ» ¹è°æÀ¸·Î ÇÏ´Â °Í¿¡ ±â¹ÝÀ» µÐ ¿¬±¸ÀÌ´Ù. ±×¸®°í ±×°ÍÀº Çлý-±³»çµéÀÇ ÀÎÁöÇÏ°í, ¹¦»çÇÏ°í, ºÐ¼®ÇÏ°í ÀÌ·ÐÀ» ¹è¿ì´Â ±×µéÀÇ ´É·ÂÀ» ¹ßÀü½Ãų ¼ö ÀÖ´Ù. ÆíÇùÇÏ°Ô ¸»·Î Ç¥ÇöÇÏ°í ½Ã´ë¿¡ ¸ÂÁö ¾Ê°í È¿°ú°¡ ¾ø´Â °úÇбâ¼ú±³À°¿¡ ´ëÇØ °ÆÁ¤ÇÏ´Â °ÍÀ» ¼Ò°³Çϸ鼭, »çÀ̹ö±³À°(e-learning)ȯ°æÀº ¿©Å±îÁö Á÷Á¢ÀûÀÎ °£¼·À» ÅëÇÑ ±³¼öÇнÀÀÇ È¿°úº¸´Ù ¼ö¾÷½Ç½À¿¡ ´õ Å« Å©±âÀÇ Çâ»óÀ» °¡Á®´ÙÁÖ´Â ÇнÀÀ» À§ÇÑ °³¼±µÈ ±â¼úÀÇ »ç¿ëÀ» ¸ñÀûÀ¸·Î ÇÏ°í ÀÖ´Ù. Çлý-±³»çµéÀº ±×µéÀÇ ±³À°½Ç½Àµ¿¾È ¹ß»ýÀûÀÎ °¡»óÀÇ ±³½Ç°ú ÇÔ²²Çϴ ª°í, ÁýÁßÀûÀ¸·Î Âü¿©ÇÏ¿´´Ù. ¿¬±¸°á°úµéÀº »ç¹ü±³À°À» À§ÇÑ ¿¬±¸±â¹ÝÀÇ »çÀ̹ö±³À° ½Ã½ºÅÛÀÇ °¡Ä¡¿Í ÇнÀÀ» ÀÌÇØÇÏ´Â »ý¹°Çп¡ ±Ù°£À» µÐ ¹ß»ýÀÌ·ÐÀÇ ÈûÀ» È®½ÅÇÏ°Ô ÇØÁØ´Ù.

--------------------------------------------------------------------
Designing a user-friendly microcomputer-based laboratory package through the factor analysis of teacher evaluations.

In this study we analyse how the experiences of chemistry teachers on the use of a Microcomputer-Based Laboratory (MBL), gathered by a Likert-scale instrument, can be utilized to develop the new package Empirica 2000. We used exploratory factor analysis to identify the essential features in a large set of questionnaire data to see how our previous MBL package, Empirica for Windows 4.0, looks from the point of view of experienced chemistry teachers. Together, a six-factor solution explained 50.1% of the common variance and indicated the teachers' perspective on the use of a MBL package in chemical education. The factors were: 'Versatility of the tool', 'User interface', 'Data presentation', 'Data acquisition', 'Set up', and 'Usability'. Based on the data, some conclusions concerning the software development and desired new features in the prototype software are discussed in the framework of each factor.


±³»çÆò°¡ÀÇ ¿äÀκм®À¸·Î »ç¿ëÇϱ⠽¬¿î ¸¶ÀÌÅ©·ÎÄÄÇ»Å͸¦ ÀÌ¿ëÇÑ ½ÇÇèÇÁ·Î±×·¥ ¼³°è

ÀÌ ¿¬±¸¿¡¼­ ¿ì¸®´Â »õ·Î¿î ÇÁ·Î±×·¥ÀÎ Empirica2000À» °³¹ßÇϱâ À§ÇÏ¿© ¸®Ä¿Æ® ôµµ ±â°è¿¡ ÀÇÇØ ¾ò¾îÁø ¸¶ÀÌÅ©·ÎÄÄÇ»Å͸¦ ÀÌ¿ëÇÑ ½ÇÇè(MBL)ÀÇ »ç¿ë¿¡ ´ëÇÑ È­Çб³»çµéÀÇ °æÇèÀ» ºÐ¼®Çß´Ù. ¿ì¸®´Â ¿ì¸®ÀÇ ÀÌÀü MBLÇÁ·Î±×·¥ÀÎ Empirica for Windows 4.0 °¡ °æÇèÀÌ ÀÖ´Â È­Çб³»çÀÇ °üÁ¡¿¡¼­ ¾î¶»°Ô º¸ÀÌ´ÂÁö ¾Ë±âÀ§ÇÏ¿© ³ª´©¾î ÁØ ¸¹Àº ¼³¹®ÀÚ·á¿¡¼­ º»ÁúÀûÀΠƯ¡µéÀ» È®ÀÎÇϱâ À§ÇØ Å½±¸¸¦ À§ÇÑ ¿äÀκм®À» »ç¿ëÇÏ¿´´Ù. ´õºÒ¾î, 6-¿äÀÎ Çؼ³Àº °øÅë ÆíÂ÷ÀÇ 50.1%¸¦ ¼³¸íÇÏ°í È­Çб³À°¿¡¼­ MBLÇÁ·Î±×·¥ÀÇ »ç¿ë¿¡ ±³»çµéÀÇ °üÁ¡À» ÁöÀûÇß´Ù. ¿äÀεé·Î´Â 'µµ±¸ÀÇ À¶Å뼺', '»ç¿ëÀÚ ÀÇ»ç¼ÒÅë(interface)', 'ÀÚ·á¹ßÇ¥', 'ÀÚ·á¼öÁý', 'üÁ¦', ±×¸®°í 'Æí¸®ÇÔ'ÀÌ ÀÖ¾ú´Ù. ÀÚ·á¿¡ ±âÃʸ¦ µÎ°í, ¼ÒÇÁÆ®¿þ¾î(software)°³¹ß¿¡ °üÇÑ ¸î¸î °á·Ðµé ¹× ½ÃÁ¦Ç° ¼ÒÇÁÆ®¿þ¾î¿¡¼­ ¿øÇß´ø »õ·Î¿î Ư¡µéÀº °¢ ¿äÀεéÀÇ °üÁ¡¿¡¼­ Åä·ÐµÇ¾îÁ³´Ù.

--------------------------------------------------------------------

Students' understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration.,

Chen-Yung Lin, Patti M.1 Reping Hu, Patti M.

The research focus on children's science has recently shifted from separate concepts to more comprehensive and complex topics. This study addressed pupils' understanding of the complex topic of energy flow and matter cycling. A scoring system with three categories and six concepts was developed and used by four biology teachers to analyze 106 pupils' concept maps. The results indicate that most of the pupils failed to recognize the interrelationships among the various concepts concerned with units of energy flow and matter cycling. It was the relationship between the living world and the non-living world that presented the greatest difficult to understanding. This paper concludes with suggestions for curriculum development and biology teaching.


±¤ÇÕ¼º°ú È£ÈíÀÛ¿ë, ¸ÔÀ̻罽ÀÇ ¹®¸Æ¿¡ ÀÖ¾î ¿¡³ÊÁö È帧°ú ¹°Áú ¼øȯ¿¡ ´ëÇÑ ÇлýµéÀÇ ÀÌÇØ

ÀÌ ¿¬±¸´Â ¾î¸°À̵éÀÇ °úÇÐÀÌ ÃÖ±Ù¿¡ °³º°ÀûÀÎ °³³ä¿¡¼­ ´õ Æ÷°ýÀûÀÌ°í º¹ÀâÇÑ ÁÖÁ¦·Î ¹Ù²î¾ú´Ù´Â °Í¿¡ ÃÊÁ¡À» µÎ°í ÀÖ´Ù. ÀÌ ¿¬±¸´Â ¿¡³ÊÁö È帧°ú ¹°Áú ¼øȯÀÇ º¹ÀâÇÑ ÁÖÁ¦¿¡ ´ëÇÑ ÇлýµéÀÇ ÀÌÇظ¦ ´Ù·ç¾ú´Ù. ¼¼ °³ÀÇ ¹üÁÖ¿Í ¿©¼¸ °³ÀÇ °³³äÀ» °¡Áø µæÁ¡ ü°è°¡ 106¸í ÇлýÀÇ °³³äÁöµµ¸¦ ºÐ¼®Çϱâ À§ÇØ 4¸íÀÇ »ý¹° ¼±»ý´Ô¿¡ ÀÇÇØ °³¹ßµÇ°í »ç¿ëµÇ¾ú´Ù. °á°ú´Â ´ëºÎºÐÀÇ ÇлýµéÀÌ ¿¡³ÊÁö È帧°ú ¹°Áú ¼øȯ °¢°¢¿¡ °ü°è°¡ ÀÖ´Â ´Ù¾çÇÑ °³³ä »çÀÌÀÇ »óÈ£°ü°è¸¦ ÀνÄÇÏÁö ¸øÇß´Ù´Â °ÍÀ» ³ªÅ¸³½´Ù. ÀÌÇØÇϴµ¥ À־ °¡Àå ¾î·Á¿òÀ» ³ªÅ¸³Â¾ú´ø °ÍÀº »ì¾ÆÀÖ´Â ¼¼°è¿Í »ì¾ÆÀÖÁö ¾ÊÀº ¼¼°è »çÀÌÀÇ °ü°è¿´´Ù. ÀÌ ³í¹®Àº ±³À°°úÁ¤ °³¹ß°ú »ý¹°¼ö¾÷À» À§ÇÑ Á¦¾Èµµ ÇÔ²² Æ÷ÇÔÇÏ°í ÀÖ´Ù.

÷ºÎ
IJSE_V25_N12(2003).hwp

À̺À¿ì
´Ü±¹´ëÇб³ °úÇб³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò