±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È
International Jouranal of Science Education,25(10), 2003
Towards a theory of curriculum implementation with particular reference to science education in developing countries.
Rogan, John M.
Grayson, Diane J.
Improving science education is often regarded as a priority for developing countries in order to promote long term economic development. Thus initiatives, both government and foreign-aid sponsored, aimed at improving science education in developing countries abound. However, all too often the focus of such initiatives is limited to the development of science curricula, while the details of how the curricula will be implemented at school level are often neglected. This paper represents an effort to lay the groundwork for a theory of curriculum implementation with particular reference to developing countries. We have drawn on school development, educational change, and science education literature in order to develop three constructs that could form the heart of such a theory, namely, Profile of Implementation, Capacity to Innovate, and Outside Support. Six propositions are offered to suggest how the constructs may inter-relate as a basis for the development of the theory. The implementation of the natural sciences learning area of the South African Curriculum 2005 is used to illustrate the emerging theory.
°³¹ßµµ»ó±¹¿¡¼ÀÇ °úÇб³À°¿¡ °ü·ÃµÈ ±³À°°úÁ¤ ÀÌÇàÀÇ À̷п¡ ´ëÇؼ
°úÇб³À°ÀÇ ¹ßÀüÀº ÈçÈ÷ °³¹ßµµ»ó±¹ÀÇ Àå±âÀûÀÎ °æÁ¦¼ºÀåÀ» Àå·ÁÇϱâ À§Çؼ ¿ì¼±À¸·Î °£ÁֵȴÙ. ±×·¯¹Ç·Î óÀ½¿¡´Â Á¤ºÎ¿Í ´ë¿Ü¿øÁ¶ ÈÄ¿ø ¸ðµÎ °úÇб³À°ÀÇ °³¼±À» ÁöÇâÇÑ´Ù. ±×·¯³ª ¾î¶»°Ô Çб³ ¼öÁØ¿¡¼ Àû¿ëµÉ °ÍÀΰ¡¿¡ ´ëÇÑ ¼¼ºÎÀûÀÎ °ÍÀº ¹«½ÃµÈ´Ù. ÀÌ ³í¹®Àº °³¹ßµµ»ó±¹¿¡ °ü·ÃÇÏ¿© ±³À°°úÁ¤ÀÇ ÀÌÇà¿¡ ´ëÇÑ ÀÌ·ÐÀÇ ±âÃʸ¦ ¼¼¿ì±â À§ÇÑ ³ë·ÂÀ» ´ã¾Ò´Ù. ¿ì¸®´Â ÀÌ·ÐÀÇ ÇÙ½É, ´Ù½Ã ¸»Çؼ ÀÌÇàÀÇ À±°û, Çõ½Å ¿ë·®, ¿ÜºÎ Áö¿øÀÌ Çü¼ºµÉ ¼ö ÀÖ´Â ¼¼ °¡Áö ±¸¼ºÀ» ¹ß´Þ½ÃÅ°±â À§Çؼ Çб³ÀÇ ¹ß´Þ, ±³À°ÀûÀÎ º¯È, ±×¸®°í °úÇб³À°ÀÇ ¹®ÇåÀ» À̲ø¾î³Â´Ù. ³²¾Æ¸Þ¸®Ä«Áö¿ªÀÇ 2005³â ±³À°°úÁ¤ÀÇ ÀÚ¿¬°úÇÐ ÇнÀ ¿µ¿ªÀÇ ÀÌÇàÀÌ ¿©·¯ À̷еéÀÇ »ç·Ê¸¦ µé±â À§Çؼ »ç¿ëµÇ¾ú´Ù.
------------------------------------------------------------
Students' understanding of molecular structure representations.
Ferk, Vesna,
Vrtacnik, Margareta
Blejec, Andrej
Gril, Alenka
The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised 'Chemical Visualisation Test' was developed and applied. The research indicates that students' appreciation of three-dimensional molecular structures differs according to the kind of representation used. The best results were achieved with the use of concrete, and pseudo-concrete types of representations (e.g. three-dimensional models, their photographs, computer-generated models). However, the use of more abstract types (e.g. schematic representations, stereochemical formula) was less effective. A correlation between students' results on the Chemical Visualisation Test and their educational level, spatial visualisation, and spatial relations skills was shown statistically, but no statistically significant gender differences were observed.
ºÐÀÚ ±¸Á¶ ¸ðÇü¿¡ ´ëÇÑ ÇлýµéÀÇ ÀÌÇØ
ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÈÇÐ ¼ö¾÷¿¡¼ »ç¿ëµÇ´Â ´Ù¾çÇÑ Á¾·ùÀÇ ºÐÀÚ ±¸Á¶ ¸ðÇü¿¡ Çлýµé¿¡ ÀÇÇؼ ºÎ¿©µÇ´Â Àǹ̸¦ °áÁ¤ÇÏ´Â °ÍÀÌ´Ù. ´ë»ó Çлý(124¸í)Àº ÃʵîÇлý(13~14¼¼), ÁßÇлý(17~18¼¼), ±×¸®°í ´ëÇлý(21~25¼¼)ÀÌ´Ù. ÀÚµ¿ÈµÈ ¡®ÈÇÐ ½Ã°¢È Å×½ºÆ®¡¯°¡ °³¹ßµÇ°í Àû¿ëµÇ¾ú´Ù. ÀÌ ¿¬±¸´Â »ïÂ÷¿ø ºÐÀÚ ±¸Á¶¿¡ ´ëÇÑ ÇлýµéÀÇ ÀνÄÀÌ »ç¿ëµÇ´Â ¸ðÇüÀÇ Á¾·ù¿¡ µû¶ó ´Ù¸£´Ù´Â °ÍÀ» ³ªÅ¸³½´Ù. °¡Àå ÁÁÀº °á°ú°¡ °áÇÕü(concrete)¿Í ÇãÀ§ °áÇÕü ÇüÅÂÀÇ Ç¥Çö(¿¹¸¦ µé¾î »ïÂ÷¿ø ¸ðÇü, ±×µéÀÇ »çÁø, ÄÄÇ»ÅÍ ÇÕ¼º ¸ðµ¨)À» »ç¿ëÇÔÀ¸·Î½á ¾ò¾îÁ³´Ù. ±×·¯³ª ´õ Ãß»óÀûÀÎ ÇüÅÂ(¿¹¸¦ µé¾î µµ½ÄÀûÀÎ ¸ðÇü, ÀÔü ÈÇÐ °ø½Ä)ÀÇ »ç¿ëÀº ´ú È¿°úÀûÀ̾ú´Ù. ÈÇÐ ½Ã°¢È Å×½ºÆ®¿¡ ´ëÇÑ ÇлýµéÀÇ °á°ú¿Í ±×µéÀÇ ±³À°Àû ¼öÁØ, °ø°£Àû ±¸»óÈ, °ø°£ °ü°è ´É·Â »çÀÌÀÇ »ó°ü°ü°è°¡ Åë°èÀûÀ¸·Î ÀÌ·ç¾îÁ³´Ù. ±×·¯³ª Åë°èÀûÀ¸·Î´Â ¼ºº° Â÷ÀÌ´Â ¾ø¾ú´Ù.
------------------------------------------------------------------
The impact of the MARS curriculum on students' ability to coordinate theory and evidence
Zimmerman, Corinne
Raghavan, Kalyani
Sartoris, Mary L.
The Model-Assisted Reasoning in Science (MARS) project seeks to promote model-centered instruction as a means of improving middle-school science education. As part of the evaluation of the sixth-grade curriculum, performance of MARS and non-MARS students was compared on a curriculum-neutral task. Fourteen students participated in structured interviews in which they experimented with a balance apparatus that provided three manipulable variables (two affected balance, one was a non-causal distractor variable). Although both groups were equally able to identify and test variables, all MARS students discovered a quantitative rule to describe the operation of the balance, whereas only one non-MARS student did so. MARS students discovered this numerical relationship through experimentation, regardless of their scientific reasoning profile (i.e. theory-generating, theory-modifying, or theory-preserving). The critical components of MARS instruction that may foster the ability to flexibly coordinate theory and evidence include multiple opportunities to draw conclusions from data and an emphasis on the successive refinement of models.
À̷аú Áõ°Å¸¦ ÅëÇÕÇÏ´Â ÇлýµéÀÇ ´É·Â¿¡¼ MARS±³À°°úÁ¤ÀÇ ¿µÇâ
¡®The Model-Assisted Reasoning in Science (MARS)¡¯ ÇÁ·ÎÁ§Æ®´Â ÁßÇб³ °úÇÐ ±³À°À» ÁõÁø½ÃÅ°´Â ¼ö´ÜÀ¸·Î ¸ðµ¨Áß½ÉÀÇ ±³À°À» ÃËÁøÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °ÍÀÌ´Ù. 6Çг⠱³À°°úÁ¤ÀÇ Æò°¡ÀÇ ÀϺκÐÀ¸·Î½á MARS ¿Í ºñMARS ÇлýµéÀÇ ¼ºÃëµµ¸¦ ±³À°°úÁ¤¿¡ Á߸³ÀûÀÎ ³»¿ëÀ¸·Î Æò°¡µÇ¾ú´Ù. 14¸íÀÇ ÇлýµéÀº ¼¼ °¡ÁöÀÇ Á¶Á¾ÇÒ ¼ö ÀÖ´Â º¯¼ö(µÎ °¡Áö´Â ±ÕÇü¿¡ ¿µÇâÀ» ÁÖ¾ú´Ù. ÇÑ °¡Áö´Â ºñ ÀϽÃÀû È¥¶õ º¯¼ö¿´´Ù.)°¡ Á¦°øµÈ Àú¿ï·Î ½ÇÇèÀ» ÇÏ´Â ±¸Á¶ÈµÈ ¸éÁ¢¿¡ Âü¿©ÇÏ¿´´Ù. ºñ·Ï µÎ ±×·ì ¸ðµÎ°¡ µ¿µîÇÏ°Ô Á¶ÀÛ º¯ÀÎÀ» È®ÀÎÇÏ°í °ËÁõÇÒ ¼ö ÀÖ¾úÁö¸¸, ¸ðµç MARS ÇлýµéÀº Àú¿ïÀÇ Á¶ÀÛÀ» ¹¦»çÇÏ´Â ¾ç¿¡ °üÇÑ ¹ýÄ¢À» ¹ß°ßÇÒ ¼ö ÀÖ¾ú´Ù. ¹Ý¸é¿¡ ºñMARS Çлý ´Ü ÇÑ¸í¸¸ÀÌ ±×·¸°Ô ÇÏ¿´´Ù. MARS ÇлýµéÀº ±×µéÀÇ °úÇÐÀû Ãß·Ð °³¿ä(¿¹: °¡¼³¼³Á¤, °¡¼³¼öÁ¤, ¶Ç´Â °¡¼³ º¸Á¸)¾øÀÌ ½ÇÇèÀ» ÅëÇØ ÀÌ·± ¼öÀÇ °ü°è¸¦ ¹ß°ßÇß´Ù. À̷аú Áõ°Å¸¦ À¶Å뼺 ÀÖ°Ô ÅëÇÕÇÏ´Â ´É·ÂÀ» ÃËÁøÇÒ ¼ö ÀÖ´Â MARS ±³À°ÀÇ Áß¿äÇÑ ¿ä¼Ò´Â µ¥ÀÌÅÍ¿¡¼ °á·ÐÀ» À̲ø¾î³»´Â ´ÙÁßÀÇ ±âȸÁ¦°ø°ú ¸ðµ¨ÀÇ ¿¬¼ÓÀûÀÎ °³¼±¿¡¼ÀÇ °Á¶¸¦ Æ÷ÇÔÇÑ´Ù.
-----------------------------------------------------------------
Developing attitude to science education scales for use with primary teachers
Anthony Pell, Tina Jarvis
This paper reports the development of attitudes to science and science teaching scales for primary teachers. The investigation is part of a project intended to improve pupil achievement in science in 16 English city schools. The baseline performance of the attitude scales is reported with 76 teachers, half of whom formed a control group. The 49-item attitudes to science teaching scale of Cronbach-alpha reliability 0.96 has sub-scales of practical science teaching and professionalism. The project teachers were less confident of teaching science than teaching the English language. They particularly lacked confidence in teaching physical processes, 'guided discovery' investigations and planning lessons within the National Curriculum as required in English schools. Attitude findings suggest appropriately focused in-service might be successful. Being a promoted teacher with some subject or administrative responsibility tends to lower certain attitudes to effective science teaching. This 'regression upon promotion effect' is speculated to be a consequence of the demands of the English school National Curriculum.
Ãʺ¸ ±³»çµéÀÌ »ç¿ëÇϱâ À§ÇÑ °úÇÐ ±³¼ö Áö¼ö¿¡ ´ëÇÑ ÅµµÀÇ °è¹ß
ÀÌ ³í¹®Àº Ãʺ¸ ±³»ç¸¦ À§ÇÑ °úÇаü °úÇÐÀû °úÇÐ ±³¼ö Áö¼ö¿¡ ´ëÇÑ Åµµ¸¦ Çâ»ó½ÃÅ°´Â °Í¿¡ ´ëÇÑ º¸°í¼ÀÌ´Ù. ÀÌ ¿¬±¸´Â ¿µ±¹ÀÇ 16°³ÀÇ Çб³¿¡¼ °úÇп¡¼ ÇлýµéÀÇ ¼ºÃ븦 Çâ»ó½ÃÅ°°íÀÚ ÀǵµµÈ ÇÁ·ÎÁ§Æ® Áß ÇϳªÀÌ´Ù. ŵµ¿¡ ÀÖ¾î¼ ±âº»ÀûÀÎ(±âÁØ) ¼öÇàÀº 76¸íÀÇ ±³»çµé°ú ÇÔ²² ÀÌ·ç¾îÁ³°í ±×µé Áß ¹ÝÀÌ ´ëÁ¶±ºÀ̾ú´Ù. Cronbach-alpha ½Å·Úµµ 0.96ÀÇ °úÇÐ ±³¼ö Áö¼öÀÇ 49°¡Áö ŵµ Ç׸ñÀº ½ÇÁ¦ÀûÀÎ °úÇÐ ±³¼ö¿Í Àü¹®¼ºÀÇ ÇÏÀ§ Ç׸ñÀ» °®´Â´Ù. ÀÌ ÇÁ·ÎÁ§Æ®¿¡¼ ¿µ¾î ¼±»ý´Ôº¸´Ù °úÇÐ ¼±»ý´ÔµéÀÌ ´õ ÀڽۨÀÌ ¾ø´Â °ÍÀ¸·Î º¸¿© Á³´Ù. ƯÈ÷ ±×µéÀº ¹°¸®Àû °úÁ¤, ¡®¾È³»µÈ ¹ß°ß¡¯ Ž±¸, ¿µ±¹ Çб³¿¡¼ ÇÊ¿ä·Î ÇÏ´Â ±¹°¡Àû ±³À°°úÁ¤³»ÀÇ °èȹµÈ °ú¸ñ¿¡¼ ÀڽۨÀÌ ºÎÁ·ÇÔÀ» º¸¿´´Ù. ŵµ¿¡¼ ¹ß°ßµÈ °ÍÀº Ưº°È÷ ÁýÁß ¹Þ´Â ÇöÁ÷±³»ç ±³À°ÀÌ ¼º°øÀûÀÏ °ÍÀ̶ó°í Á¦¾ÈÇß´Ù. ¶Ç ¸î °¡Áö °úÁ¦³ª ÇàÁ¤»óÀÇ Ã¥ÀÓÀ¸·Î Àå·Á ¹Þ´Â ±³»ç°¡ µÇ´Â °ÍÀº È¿°úÀûÀÎ °úÇÐ ±³¼ö¿¡ ´ëÇÑ ¾î¶² ŵµ¸¦ ³·Ãß´Â °æÇâÀÌ ÀÖ´Ù. ÀÌ·¯ÇÑ ¡®ÃËÁø È¿°ú¿¡¼ÀÇ ¿ªÇà¡®Àº ¿µ±¹ ±¹°¡ ±ÔÁ¤¿¡ µû¸¥ ¿ä±¸ »çÇ×ÀÇ °á°ú¶ó°í ÃßÃøµÈ´Ù.
÷ºÎ
IJSE_25(10)_2003.hwp
À̺À¿ì
´Ü±¹´ëÇб³ °úÇб³À°°ú
|