"°úÇй®È­±³À°"

2007-04-25 (Vol 4, No 4)

·Î±×ÀÎ | À¥Áø | ÇѸ¶´ç

¸ÕÁ£±Û  |  ´ÙÀ½±Û  |  Â÷·Ê

±¹Á¦Àû °úÇб³À°Çмú³í¹® ¿ä¾à°ú ¿Ü±¹ °úÇб³À° ¹× ±¹Á¦È­

Journal of Research in Science Teaching, 44(4), April 2007

Proliferation of inscriptions and transformations among preservice science teachers engaged in authentic science
Âü °úÇп¡ Âü¿©ÇÑ ¿¹ºñ °úÇб³»çµéÀÇ ÀûÀýÇÑ Á¦¸ñºÙÀ̱â¿Í º¯ÇüÇϱâÀÇ ¼÷·Ã

Eddie Lunsford, Claudia T. Melear, Wolff-Michael Roth, Matthew Perkins, Leslie G. Hickok

Abstract
Inscriptions are central to the practice of science. Previous studies showed, however, that preservice teachers even those with undergraduate degrees in science, generally do not spontaneously produce inscriptions that economically summarize large amounts of data. This study was designed to investigate the production of inscription while a group of 15 graduate-level preservice science teachers engaged in a 15-week course of scientific observation and guided inquiry of two organisms. The course emphasized the production of inscriptions as a way of convincingly supporting claims when the students presented their results. With continuing emphasis on inscriptional representations, we observed a significant increase in the number and type of representations made as the course unfolded. The number of concrete, text-based inscriptions decreased as the number of graphs, tables and other sorts of complex inscriptions increased. As the students moved from purely observational activities to guided inquiry, they made many more transformations of their data into complex and abstract forms, such as graphs and concept maps. The participants' competencies to cross-reference ultimate transformations to initial research questions improved slightly. Our study has implications for the traditional methods by which preservice science teachers are taught in their science classes.

¾î¶² µ¥ÀÌÅÍ¿¡ À̸§À» ºÙÀÌ´Â °ÍÀº °úÇÐÀÇ ½ÇÇà¿¡¼­ Áß½ÉÀû È°µ¿ÀÌ´Ù. ±×·¯³ª ¼±Ç࿬±¸¿¡ µû¸£¸é ºñ·Ï Çлç ÇÐÀ§¸¦ °¡Áø ¿¹ºñ±³»çµéÁ¶Â÷µµ ÀϹÝÀûÀ¸·Î ¸¹Àº ¾çÀÇ µ¥ÀÌÅ͸¦ È¿°úÀûÀ¸·Î ¿ä¾àÇÏ´Â ÀÛ¸íÀ» ÀÚ¹ßÀûÀ¸·Î ¸¸µé¾î³»Áö ¸øÇÑ´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù. ÀÌ ¿¬±¸´Â µÎ »ý¹°Ã¼¿¡ ´ëÇÑ 15ÁÖ °úÁ¤ÀÇ °úÇÐÀû °üÂû°ú ¾È³»µÈ Ž±¸¿¡ Âü°¡ÇÑ 15¸íÀÇ ¼®»ç ¼öÁØÀÇ ¿¹ºñ°úÇб³»çµéÀÇ Á¦¸ñÀÇ »ý¼ºÀ» Á¶»çÇÏ´Â °ÍÀÌ´Ù. ÀÌ ÄÚ½º¿¡¼­´Â ÇлýµéÀÌ ±×µéÀÇ °á°ú¸¦ Ç¥ÇöÇÒ ¶§, È®½ÅÀ» °¡Áö°í ÁÖÀåÀ» Áö¿øÇÏ´Â ¹æ¹ýÀ¸·Î¼­ÀÇ Á¦¸ñÀÇ »ý¼ºÀ» °­Á¶Çß´Ù. Á¦¸ñÀÇ Ç¥Çö¿¡ ´ëÇØ °è¼ÓÀûÀ¸·Î °­Á¶ÇÔÀ¸·Î½á, °úÁ¤ÀÌ ÁøÇàµÊ¿¡ µû¶ó ÇлýµéÀÌ ÀÛ¸íÇÑ Ç¥ÇöÀÇ ¼ö¿Í ÇüÅ°¡ ÇöÀúÈ÷ Áõ°¡ÇÔÀ» °üÂûÇß´Ù. ±¸Ã¼ÀûÀÌ°í ±³°ú¼­¿¡ ±âÃÊÇÑ Á¦¸ñºÙÀ̱âÀÇ ¼ö´Â ±×·¡ÇÁ, Ç¥, ´Ù¸¥ Á¾·ùÀÇ º¹ÀâÇÑ Á¦¸ñºÙÀ̱Ⱑ Áõ°¡ÇÔ¿¡ µû¶ó °¨¼ÒÇÏ¿´´Ù. ÇлýµéÀÌ ¼ø¼öÇÑ °üÂû ÇൿÀ¸·ÎºÎÅÍ ¾È³»µÈ Ž±¸·Î À̵¿ÇÔ¿¡ µû¶ó, ±×µéÀº ±×µéÀÇ µ¥ÀÌÅ͸¦ ±×·¡ÇÁ, °³³äµµ¿Í °°Àº º¹ÀâÇÏ°í Ãß»óÀûÀÎ ÇüÅ·ÎÀÇ º¯ÇüÀ» ´õ ¸¹ÀÌ ¸¸µé¾ú´Ù. óÀ½ÀÇ ¿¬±¸µ¿±âÀÎ, ÀüÈÄ ¹®¸ÆÀÌ °¨¾ÈµÈ ±Ã±ØÀûÀÎ º¯Çü¿¡ ´ëÇÑ Âü°¡ÀÚµéÀÇ ´É·ÂÀº ¾à°£ Çâ»óµÇ¾ú´Ù. ¿ì¸®ÀÇ ¿¬±¸´Â ¿¹ºñ °úÇб³»çµéÀÌ °úÇмö¾÷¿¡¼­ ÇнÀÇÏ°í ÀÖ´Â ÀüÅëÀûÀÎ ¹æ¹ý¿¡ ´ëÇØ ¾î¶² ½Ã»ç¸¦ ÁÖ°í ÀÖ´Ù.



Using analogies to improve the teaching performance of preservice teachers
¿¹ºñ±³»çµéÀÇ ¼ö¾÷ ´É·ÂÀ» Çâ»ó½ÃÅ°±â À§ÇÑ ºñÀ¯ÀÇ »ç¿ë

Mark C. James, Lawrence C. Scharmann

Abstract
Prior research in both education and cognitive science has identified analogy making as a powerful tool for explanation as well as a fundamental mechanism for facilitating an individual's construction of knowledge. While a considerable body of research exists focusing on the role analogy plays in learning science concepts, relatively little is known about how instruction in the use of analogies might influence the teaching performance of preservice teachers. The primary objective of this study was to investigate the relationship between pedagogical analogy use and pedagogical reasoning ability in a sample of preservice elementary teachers (PTs), a group that has been identified for their particular difficulties in teaching science. The study utilized a treatment/contrast group design in which the treatment group was provided instruction that guided them in the generation of analogies to aid in the explanation phase of learning cycle lessons. A relationship between analogy use and positive indicants of teaching performance was observed and a case study of a low performing preservice teacher who drastically improved teaching performance using analogy-based pedagogy is presented. A notable effect on conceptual understanding of Newton's Third Law as a result of two brief analogy-based demonstration lessons was also observed.

±³À°Çаú ÀÎÁö°úÇп¡¼­ÀÇ Áö±Ý±îÁö ¿¬±¸¿¡ ÀÇÇÏ¸é ºñÀ¯ ¸¸µé±â´Â °³ÀÎÀÇ Áö½Ä ±¸¼ºÀ» µµ¿ÍÁÖ´Â ±âº»ÀûÀÎ ¸ÞÄ«´ÏÁòÀ¸·Î¼­ »Ó¸¸ ¾Æ´Ï¶ó ¼³¸íÀ» À§ÇÑ °­·ÂÇÑ µµ±¸°¡ µÈ´Ù. ±×·±µ¥ »ó´ç¼öÀÇ ºñÀ¯¿¡ ´ëÇÑ ¿¬±¸°¡ °úÇÐ °³³äÀ» ÇнÀÇϴµ¥ À־ÀÇ ºñÀ¯ÀÇ ¿ªÇÒ¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ¾î, ºñÀ¯¸¦ »ç¿ëÇÏ´Â ¼ö¾÷ÀÌ ¿¹ºñ±³»çµéÀÇ ¼ö¾÷ ´É·Â¿¡ ¾î¶»°Ô ¿µÇâÀ» ¹ÌÄ¡´ÂÁö¿¡ ´ëÇؼ­´Â °ÅÀÇ ¾Ë·ÁÁ® ÀÖÁö ¾Ê´Ù. ÀÌ ¿¬±¸ÀÇ ÁÖµÈ ¸ñÇ¥´Â, °úÇÐÀ» °¡¸£Ä¡´Âµ¥ Ưº°ÇÑ ¾î·Á¿òÀ» °¡Áø °ÍÀ¸·Î È®ÀÎµÈ ±×·ìÀÎ, ÀϺÎÀÇ ¿¹ºñ ÃʵîÇб³ ±³»çµéÀ» ÅëÇؼ­ ±³¼ö¹ýÀûÀÎ ºñÀ¯ÀÇ »ç¿ë°ú ±³¼ö¹ýÀûÀÎ Ãß·Ð ´É·Â»çÀÌÀÇ °ü·Ã¼ºÀ» Á¶»çÇÏ´Â °ÍÀ̾ú´Ù. ¿¬±¸´Â óġ Áý´Ü°ú ºñ±³ Áý´ÜÀ» ±¸ºÐÇÏ¿© È°¿ëÇÏ¿´À¸¸ç, óġ Áý´Ü¿¡°Ô´Â ¼øȯÇнÀ ¸ðÇüÀÇ ¼³¸í ´Ü°è¿¡¼­ ºñÀ¯ÀÇ »ý¼º¿¡ µµ¿òÀ» ÁÖ±â À§Çؼ­ ºñÀ¯ »ý¼ºÀ» ¾È³»ÇÏ´Â ±³À°À» Á¦°øÇÏ¿´´Ù. ºñÀ¯ÀÇ »ç¿ë°ú ¼ö¾÷ ´É·ÂÀÇ »çÀÌ¿¡ ±àÁ¤ÀûÀÎ °ü·Ã¼ºÀÌ °üÃøµÇ¾ú°í ºñÀ¯¿¡ ±â¹ÝÀ» µÐ ±³¼ö¹ýÀ» »ç¿ëÇÔÀ¸·Î½á ¼ö¾÷ ´É·ÂÀÌ ³·Àº ±³»çµéÀÇ ¼ö¾÷ ´É·ÂÀÌ ±Þ°ÝÈ÷ Çâ»óµÇ¾úÀ½À» º¸¿´´Ù. °£·«ÇÑ ºñÀ¯¿¡ ±â¹ÝÀ» µÐ µÎ ¹ø¿¡ °ÉÄ£, ½Ã¹ü¿¡ ±âÃÊÇÑ ¼ö¾÷ÀÇ °á°ú·Î ´ºÆ°ÀÇ Á¦3¹ýÄ¢ÀÇ °³³ä ÀÌÇØ¿¡ ÁÖ¸ñÇÒ ¸¸ÇÑ È¿°ú°¡ ÀÖ¾úÀ½µµ °üÂûµÇ¾ú´Ù.



Learning from students, inquiry into practice, and participation in professional communities: Beginning teachers' uneven progress toward equitable science teaching
ÇлýÀ¸·ÎºÎÅÍ ¹è¿ì±â, ½ÇÁúÀûÀΠŽ±¸, ±×¸®°í Àü¹®°¡ Áý´Ü¿¡ÀÇ Âü¿©: ÃÊÀÓ ±³»çµéÀÇ °°Áö ¾ÊÀº ÁøÀü

Julie A. Bianchini, Lynnette M. Cavazos

Abstract
In this research project, we investigated two beginning secondary science teachers' efforts to learn to teach science in ways that build from and celebrate the ethnic, gender, linguistic, and academic diversity of their students. To do so, we followed Troy and Brian from their preservice teacher education experiences through their first year of teaching 8th grade physical science at local junior high schools. We also conducted a follow-up observation and interview with each participant after he had moved past the beginning stage of survival in the teaching profession - once in his fourth year of public school science teaching. Through qualitative analysis of interviews, classroom observations, and teachers' written work, we identified patterns and explored commonalities and differences in Troy and Brian's views and practices tied to equity over time. In particular, we examined successes and challenges they encountered in learning to teach science for all (a) from their students, (b) from inquiry into practice, and (c) from participation in professional communities. In our implications, we suggest ways teacher educators and induction professionals can better support beginning teachers in learning to teach science to all students. In particular, we highlight the central roles both individual colleagues and collective school cultures play in aiding or impeding beginning teachers' efforts to learn from students, from practice, and from professional communities.

ÀÌ ¿¬±¸ ÇÁ·ÎÁ§Æ®¿¡¼­ ¿ì¸®´Â µÎ ¸íÀÇ ÃÊÀÓ Áßµî°úÇб³»ç°¡ ÇлýµéÀÇ ÀÎÁ¾, ¼º, ¾ð¾î, Çй®Àû Â÷À̸¦ ÀÎÁ¤ÇÏ°í Á¤¸³ÇØ °¡´Â ¹æ¹ý¿¡ À־ °úÇÐ Áöµµ¹ýÀ» ¹è¿ì·Á´Â ³ë·ÂÀ» Á¶»çÇÏ¿´´Ù. ±×·¸°Ô Çϱâ À§Çؼ­, ¿ì¸®´Â Troy ¿Í BrianÀÇ ¿¹ºñ±³»ç±³À° °æÇè°ú ¾î¶² Áö¿ªÀÇ ÁßÇб³¿¡¼­ ù ÇØ 8Çг⠹°¸®°úÇÐÀ» °¡¸£Ä¡´Â °úÁ¤À» ÃßÀû Á¶»çÇÏ¿´´Ù. ¿ì¸®´Â ¶ÇÇÑ °¢°¢ÀÇ Âü°¡ÀÚ°¡ ±³¼ö Àü¹®¼º¿¡¼­ÀÇ ÃÊÀÓ ´Ü°è¸¦ ¹þ¾î³ª°í °ø¸³Çб³ 4³âÂ÷°¡ µÈ ÈÄ¿¡ °¢ Âü°¡ÀÚ¿¡ ´ëÇØ Ãß¼ö °üÂû ¹× ÀÎÅͺ並 ½Ç½ÃÇÏ¿´´Ù. ÀÎÅͺä, ±³½Ç°üÂû, ±³»çÀÇ ÁöÇÊ ÀÛ¾÷¿¡ ´ëÇÑ Á¤¼ºÀûÀÎ ºÐ¼®À» ÅëÇÏ¿©, ¿ì¸®´Â ÆÐÅÏÀ» È®ÀÎÇÏ¿´°í µ¿ÀÏÇÑ ¼±»ó¿¡¼­ Troy ¿Í BrianÀÇ °üÁ¡°ú ½Çõ¿¡¼­ °øÅëÁ¡°ú Â÷ÀÌÁ¡À» Ž»öÇÏ¿´´Ù. Ưº°È÷, ¿ì¸®´Â ±×µéÀÌ °úÇÐÀ» °¡¸£Ä¡¸é¼­, ©Í±×µéÀÇ Çлýµé·ÎºÎÅÍ, ©Î Ž±¸¸¦ ½ÇõÇÏ´Â µ¥ À־, ©Ï Àü¹®°¡ Áý´Ü¿¡ Âü¿©ÇÏ°Ô µÊÀ¸·ÎºÎÅÍ Á÷¸éÇÏ°Ô µÇ´Â ¼º°ø Á¡µé°ú ³­Á¡µéÀ» Á¶»çÇÏ¿´´Ù. ÀÌ ¿¬±¸ °á°ú·ÎºÎÅÍ, ¿ì¸®´Â ±³»ç ±³À°ÀÚ¿Í ±³¼öµéÀÌ ÃÊÀÓ ±³»çµéÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ´õ ³ªÀº ¹æ¹ýµéÀ» Á¦¾ÈÇÑ´Ù. ƯÈ÷, ¿ì¸®´Â °³º°ÀûÀÎ µ¿·áµé ¹× Áý´ÜÀûÀÎ Çб³ ¹®È­°¡ ÇлýÀ¸·ÎºÎÅÍ, ½Ç½ÀÀ¸·ÎºÎÅÍ, ±×¸®°í Àü¹®°¡ Áý´ÜÀ¸·ÎºÎÅÍ ¹è¿ì·Á´Â ÃÊÀÓ ±³»çµéÀÇ ³ë·ÂÀ» µ½°Å³ª ¹æÇØÇÏ´Â Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÑ´Ù´Â °ÍÀ» °­Á¶ÇÑ´Ù.




Learning to teach science as inquiry in the rough and tumble of practice
´Ùµë¾îÁöÁö ¾ÊÀº ½Ç½À¿¡¼­ Ž±¸ °úÇÐÀ» °¡¸£Ä¡´Â °ÍÀ» ¹è¿ì±â

Barbara A. Crawford

Abstract
This study examined the knowledge, beliefs and efforts of five prospective teachers to enact teaching science as inquiry, over the course of a one-year high school fieldwork experience. Data sources included interviews, field notes, and artifacts, as these prospective teachers engaged in learning how to teach science. Research questions included 1) What were these prospective teachers' beliefs of teaching science? 2) To what extent did these prospective teachers articulate understandings of teaching science as inquiry? 3) In what ways, if any, did these prospective teachers endeavor to teach science as inquiry in their classrooms? 4) In what ways did the mentor teachers' views of teaching science appear to support or constrain these prospective teachers' intentions and abilities to teach science as inquiry? Despite support from a professional development school setting, the Interns' teaching strategies represented an entire spectrum of practice - from traditional, lecture-driven lessons, to innovative, open, full-inquiry projects. Evidence suggests one of the critical factors influencing a prospective teacher's intentions and abilities to teach science as inquiry, is the teacher's complex set of personal beliefs about teaching and of science. This paper explores the methodological issues in examining teachers' beliefs and knowledge in actual classroom practice.

º» ¿¬±¸´Â Ž±¸·Î¼­ °úÇÐÀ» °¡¸£Ä¡´Â °ÍÀ» ½ÇõÇϱâ À§Çؼ­ 1³â µ¿¾ÈÀÇ °íµîÇб³ ÇöÀå ½Ç½À °æÇèÀÇ °úÁ¤À» ÅëÇؼ­ Àå·¡¼º ÀÖ´Â 5¸íÀÇ ±³»çµéÀÇ Áö½Ä, ½Å³ä, ³ë·ÂÀ» Á¶»çÇÏ¿´´Ù. µ¥ÀÌÅÍ ¿øõÀº ÀÌµé ±³»çµéÀÌ °úÇÐ ¼ö¾÷ ¹æ¹ýÀ» ÇнÀÇÏ´Â µ¥ Âü¿©ÇßÀ» ¶§ ¼öÇàÇß´ø ÀÎÅͺä, ½Ç½À ³ëÆ®, ÀÛ¾÷ ÀÛÇ° µîÀÌ´Ù. ¿¬±¸ Áú¹®Àº ´ÙÀ½°ú °°´Ù: 1) °úÇÐÀ» °¡¸£Ä¡´Âµ¥ À־ ÀÌ·¯ÇÑ Àå·¡¼º ÀÖ´Â ±³»çµéÀÇ ½Å³äÀº ¹«¾ùÀΰ¡? 2) ÀÌ·¯ÇÑ Àå·¡¼º ÀÖ´Â ±³»çµéÀº Ž±¸·Î¼­ÀÇ °úÇÐÀ» °¡¸£Ä¡´Âµ¥ ´ëÇؼ­ ¾î´À ¹üÀ§±îÁö ºÐ¸íÇÏ°Ô ÀÌÇØÇÏ°í Àִ°¡? 3) ±×·¸´Ù¸é, ÀÌ·¯ÇÑ Àå·¡¼º ÀÖ´Â ±³»çµéÀº ±³½Ç¿¡¼­ Ž±¸·Î¼­ÀÇ °úÇÐÀ» °¡¸£Ä¡±â À§Çؼ­ ¾î¶°ÇÑ ¹æ¹ýÀ¸·Î ³ë·ÂÇߴ°¡? 4) ½º½Â ±³»çµéÀÇ °úÇÐÀ» °¡¸£Ä¡´Â °üÁ¡Àº Ž±¸·Î¼­ °úÇÐÀ» °¡¸£Ä¡°íÀÚÇÏ´Â ÀÌ·¯ÇÑ Àå·¡¼º ÀÖ´Â ±³»çµéÀÇ ÀÇÁö¿Í ´É·ÂÀ» ¾î¶°ÇÑ ¹æ½ÄÀ¸·Î ÁöÁöÇϰųª °­Á¦Çߴ°¡?
Çб³ÀÇ Àü¹®¼º ½ÅÀå Áö¿ø¿¡µµ ºÒ±¸ÇÏ°í, ÀÎÅÏÀÇ ¼ö¾÷ Àü·«Àº ÀüÅëÀû °­ÀÇ¿¡¼­ºÎÅÍ Çõ½ÅÀû, °³¹æÀûÀÎ, ÀüÀûÀΠŽ±¸ ÇÁ·ÎÁ§Æ®±îÁö ¼ö¾÷¿¡ ´ëÇÑ ÀüüÀûÀÎ ½ºÆåÆ®·³À» ³ªÅ¸³»¾ú´Ù. ÀÌ ¿¬±¸¿¡¼­ ¾ò¾îÁø Áõ°Åµé·ÎºÎÅÍ ¿ì¸®´Â Ž±¸·Î¼­ °úÇÐÀ» °¡¸£Ä¡´Â Àå·¡¼º ÀÖ´Â ±³»çµéÀÇ ÀÇÁö¿Í ´É·Â¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ ¿ä¼ÒÀÇ Çϳª´Â ¼ö¾÷°ú °úÇп¡ ´ëÇÑ °³ÀÎÀû ½Å³äÀÇ º¹ÇÕüÀÓÀ» Á¦¾ÈÇÑ´Ù. ÀÌ ¿¬±¸¿¡¼­´Â ½ÇÁ¦ ±³½Ç ¼ö¾÷¿¡¼­ ±³»çÀÇ ½Å³ä°ú Áö½ÄÀ» °Ë»çÇÏ´Â ¹æ¹ý·ÐÀûÀÎ ¹®Á¦¸¦ Ž»öÇÏ¿´´Ù.

±è¿ø¼÷. ±è¿µ¹Î, ºÎ»ê´ëÇб³ ¹°¸®±³À°°ú

°úÇй®È­±³À°¿¬±¸¼Ò